

Abstract Linear Algebra - Part 38

Definition: Let \bigvee be an \mathbb{F} -vector space and $\mathcal{L}: \bigvee \longrightarrow \bigvee$ be a linear map. subspace l – A subspace \bigcup is called invariant under λ if $\chi[U] \subseteq U$. <u>Consequence:</u> $l_{III}: U \longrightarrow U$ linear map Important application: $A \in \mathbb{C}^{h \times h}$, $\lambda \in \mathbb{C}$ eigenvalue of A. Fitting index We have generalized eigenspaces: $\{0\} \subseteq \operatorname{Ker}\left(\left(A - \lambda \cdot \mathbb{1}\right)^{1}\right) \subseteq \operatorname{Ker}\left(\left(A - \lambda \cdot \mathbb{1}\right)^{2}\right) \subseteq \cdots \subseteq \operatorname{Ker}\left(\left(A - \lambda \cdot \mathbb{1}\right)^{2}\right)$ $1 \le d \le b$ $\left(\begin{bmatrix} n \\ p \end{bmatrix} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{1} \right) \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow{} \cdots \xrightarrow{} \operatorname{Ran}\left(\left(A - \lambda \cdot 1 \right)^{2} \right) \xrightarrow{} \cdots \xrightarrow$ <u>Then:</u> $\operatorname{Ker}\left(\left(A - \lambda \cdot \mathbb{1}\right)^{d}\right)$ and $\operatorname{Ran}\left(\left(A - \lambda \cdot \mathbb{1}\right)^{d}\right)$ are invariant under A <u>Proof:</u> $(A - \lambda \cdot 1) x = Ax - \lambda x$. So: $\frac{x \in U}{(A - \lambda \cdot 1) x \in U} \implies Ax = (A - \lambda \cdot 1) x + \lambda x$ Define: $N := A - \lambda \cdot 1$

(1) Show
$$\operatorname{Ker}(N^{d})$$
 is invariant: $x \in \operatorname{Ker}(N^{d}) \Longrightarrow N^{d}(Nx) = N \underbrace{N^{d}x}_{=0} = 0$
 $\Longrightarrow N x \in \operatorname{Ker}(N^{d})$

(2) Show
$$\operatorname{Ran}(N^d)$$
 is invariant: $\gamma \in \operatorname{Ran}(N^d) \Longrightarrow$ there is $x \in \mathbb{C}^n$ with $\gamma = N^d \times$
 $\implies N \gamma = N(N^d \times) = N^d(N \times) \in \operatorname{Ran}(N^d) \square$