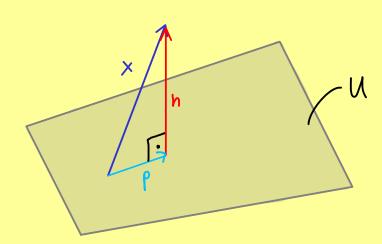
ON STEADY

The Bright Side of Mathematics

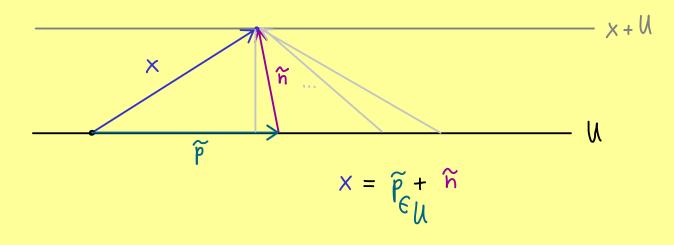
Abstract Linear Algebra - Part 17

V F-vector space, inner product $\langle \cdot, \cdot \rangle$, $U \subseteq V$ k-dimensional subspace.



Simplified picture:

What is the distance between U and $\chi + U$?



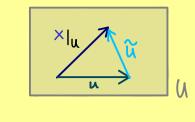
Approximation formula:

 \forall F-vector space, inner product $\langle \cdot, \cdot \rangle$, $\forall \subseteq \forall$ k-dimensional subspace.

For
$$x \in V$$
: dist(x, U) := inf $\{\|x - u\| \mid u \in U\} = \|x - \underbrace{x_{|u|}}$



Proof: For all $u \in U$: $\|x - u\|^2 = \|(x - x|_{W} + (x|_{u} - u)\|^2$ normal component of x with respect to U



orthogonal projection

$$= \langle n + \widetilde{u}, n + \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle \widetilde{u}, n \rangle + \langle \widetilde{u}, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u} \rangle$$

$$= \langle n, n \rangle + \langle n, \widetilde{u}$$

$$\implies$$
 inf $\{\|x - u\| \mid u \in \mathcal{U}\} \geq \|n\|$

We have equality \iff $\hat{u} = 0$ \iff $u = x|_{u}$