ON STEADY

The Bright Side of Mathematics

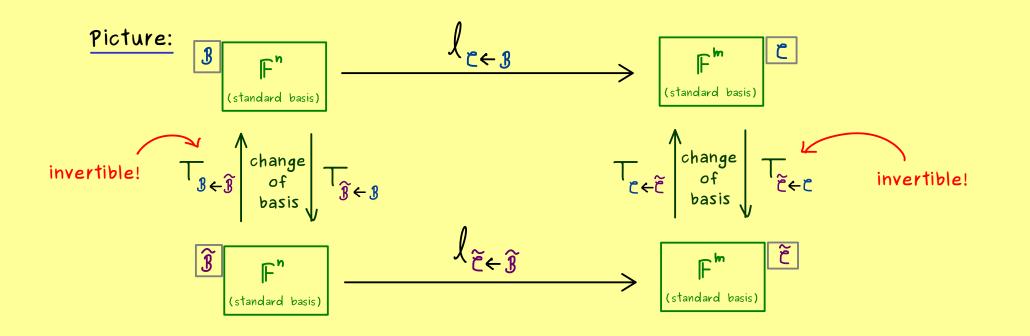
Abstract Linear Algebra - Part 28

Fact:

$$\begin{pmatrix} 3 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 3 & -2 & 0 & 0 \\ 3 & 2 & 0 & 0 \\ -1 & 0 & 1 & 1 \end{pmatrix} \text{ are different but}$$

they describe the <u>same</u> linear map $l: \mathbb{P}_3(\mathbb{R}) \longrightarrow \mathbb{P}_2(\mathbb{R}), \ l(\rho) = \rho'$ with respect to different bases.

Question:
$$l: V \longrightarrow W$$
 linear, $A = l_{c \in \mathcal{B}} \in \mathbb{F}^{m \times n}$.
For another $\widetilde{A} \in \mathbb{F}^{m \times n}$, can we find bases such that $\widetilde{A} = l_{\widetilde{c} \in \widetilde{\mathcal{B}}}$?
If YES!, then we say A and \widetilde{A} are equivalent.



Definition: A matrix $\widetilde{A} \in \mathbb{F}^{m \times n}$ is called <u>equivalent to a matrix $A \in \mathbb{F}^{m \times n}$ </u> if there are invertible matrices $S \in \mathbb{F}^{m \times m}$, $T \in \mathbb{F}^{h \times n}$, such that: $\widetilde{A} = S \land T$. We write: $\widetilde{A} \sim A$ Remark: \sim defines an equivalence relation on $\mathbb{F}^{m \times n}$: (1) reflexive: $A \sim A$ for all $A \in \mathbb{F}^{m \times n}$ (2) symmetric: $A \sim B \implies B \sim A$ for all $A, B \in \mathbb{F}^{m \times n}$ (3) transitive: $A \sim B \land B \sim C \implies A \sim C$ for all $A, B, C \in \mathbb{F}^{m \times n}$