

a':=b' (common notation)(a) \Rightarrow (G1) Let $a \in G$. (b) There is a left identity $e \in G$. (c) Each $a \in G$ is left invertible, i.e. there exists $b \in G$ with $b \circ a = e$. (K) Choose $b \in G$ with b a = e. Then $a b \stackrel{(b)}{=} a(eb) \stackrel{(K)}{=} a(ba)b = (ab)(ab)$. (**) Choose $c \in G$ with c(ab) = e (by (c))

Proof:

$$\Rightarrow ab \stackrel{(b)}{=} e(ab) \stackrel{\checkmark}{=} c(ab)(ab) \stackrel{(**)}{=} c(ab) \stackrel{\checkmark}{=} e \implies (G3) \checkmark$$
$$\Rightarrow ae \stackrel{(*)}{=} a(ba) = (ab)a \stackrel{\checkmark}{=} ea = a \implies (G2) \checkmark$$