ON STEADY

The Bright Side of Mathematics

Algebra - Part 5

<u>Group:</u> G together with binary operation \circ and:

- (G1) associativity $a \circ (b \circ c) = (a \circ b) \circ c$ for all $a, b, c \in G$
- (G2) unique identity $e \in G$: $e \circ a = a = a \circ e$ for all $a \in G$
- (G3) all inverses exist: $\forall a \in G \exists b \in G : b \circ a = e = a \circ b$ $\bar{a}^1 := b$ (common notation)

Uniqueness of inverses:

$$(S, \circ)$$
 semigroup with identity $e \in S$.
If $a \in S$ is a left invertible with $x (x \circ a = e)$ and right invertible with y , then $x = \gamma$.

Proof:
$$X = X \circ e = X \circ (a \circ y) = (X \circ a) \circ y = e \circ y = y$$

(a) $G = \{e\}$ with $e \circ e = e$, $e^{-1} = e$ Examples:

(b)
$$G = \{e, a\}$$

 $a = a$
 $a = a$
 $a = a$

(c) $(\mathbb{Z}, +)$ with identity 0 and inverses 3 + (-3) = 0

$$\left(\mathbb{Q}\setminus\{0\},\cdot\right) \text{ with identity 1 and inverses } \frac{1}{4}\cdot\left(\frac{1}{4}\right) = 1$$

$$\left(\mathbb{C}^{n\times n},+\right) \text{ with identity } \begin{pmatrix}0&\cdots&0\\\vdots&\ddots&\vdots\\0&\cdots&0\end{pmatrix}$$

$$\left(\left\{A\in\mathbb{C}^{n\times n} \mid \det(A)\neq 0\right\},\cdot\right) \text{ with identity } \begin{pmatrix}1\\\ddots\\1\end{pmatrix}$$

Let $(5, \circ)$ be a semigroup with identity $e \in S$. General example: $S^* := \left\{ a \in S \mid a \text{ is invertible} \right\}$ $\left\{ a \in S \mid a \in S \mid a \in S \in \mathbb{R} \right\}$

Then $(5^*, \circ)$ is a group.

Proof: (1)
$$e \circ e = e \implies e \in S^*$$
 with $e^{-1} = e \implies (G2)^{\checkmark}$
(2) $a \in S^* \implies \overline{a^1} \circ a = e \implies \overline{a^1} \in S^* \implies (G3)^{\checkmark}$
 $a \circ \overline{a^1} = e \implies \overline{a^1} \in S^* \implies (G3)^{\checkmark}$
(3) $a, b \in S^* \implies (\overline{b^1} \circ \overline{a^1}) \circ (a \circ b) \stackrel{\checkmark}{=} \overline{b^1} \circ (\overline{a^1} \circ a) \circ b = e \qquad associativity in S \qquad e \qquad (a \circ b) \circ (\overline{b^1} \circ \overline{a^1}) \stackrel{\checkmark}{=} a \circ (b \circ \overline{b^1}) \circ \overline{a^1} = e$

 \Rightarrow (5^* , \circ) is a well-defined semigroup