ON STEADY

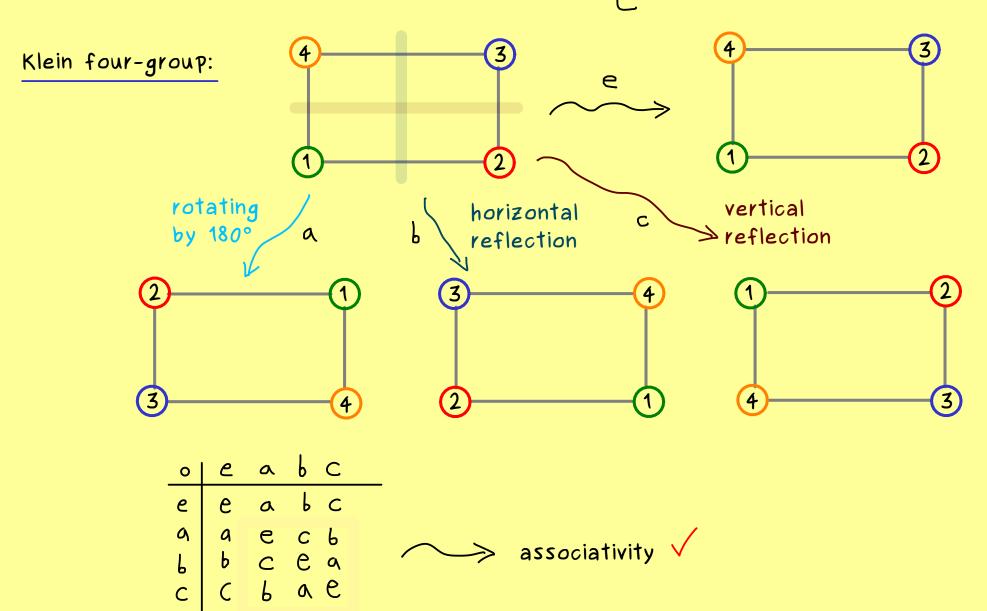
The Bright Side of Mathematics

Algebra - Part 11

Recall subgroups: $(G,\circ) \longrightarrow H \subseteq G$, (H,\circ) group $\longrightarrow H$ subgroup of G $\longrightarrow H \subseteq G$

<u>Proposition:</u> (6,0) group, $H \subseteq G$ non-empty subset.

$$H \leq G \iff \begin{cases} a \circ b \in H & \text{for all } a, b \in H \\ \overline{a^1} \in H & \text{for all } a \in H \end{cases}$$



 (G, \circ) with $G = \{e, \alpha, b, c\}$ and o satisfying the table above defines the so-called Klein four group, called K_4 .

<u>Proposition:</u> Let (G, \circ) be a group with $\operatorname{ord}(G) < \infty$, $H \subseteq G$ be a non-empty subset.

Then: $H \leq G \iff a \circ b \in H$ for all $a, b \in H$

<u>Proof:</u> (\Longrightarrow) \checkmark (\Leftarrow) (H,\circ) semigroup of finite order and both cancellation properties hold

$$\begin{pmatrix} a \circ x = a \circ y \implies x = y \\ x \circ b = y \circ b \implies x = y \end{pmatrix}$$
part 6
$$\implies (H, \circ) \text{ is a group}$$

Example: $G = \{e, a, b, c\}$ Klein four-group.

subgroups: $H_1 = \{e\}$, $H_2 = \{e, a\}$, $H_3 = \{e, b\}$, $H_4 = \{e, c\}$, $H_5 = G$

we have 5 subgroups