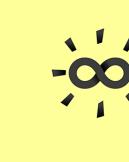
ON STEADY

The Bright Side of Mathematics



f integrable with respect to

Fourier Transform - Part 5

 $\mathcal{L}_{2\pi\text{-per}}^{1}(\mathbb{R},\mathbb{C}) = \left\{ f \in \mathcal{F}_{2\pi\text{-per}}(\mathbb{R},\mathbb{C}) \mid \int_{-\pi}^{\pi} |f(x)| \, dx < \infty \right\}$ complex vector space f integrable with

Let's take square—integrable functions:

Lebesque measure on
$$[-\hat{\pi}, \hat{\pi}]$$

norm? $\|f\|_1 := \int_{-\pi}^{\pi} |f(x)| dx$

problem:

not a norm on $\mathcal{L}^1_{2\pi\text{-per}}(\mathbb{R}, \mathbb{C})$

solution: equivalence relation $f \sim g :\iff \|f-g\|_1 = 0$

set of all equivalence classes: $L^{1}_{2\pi\text{-per}}(\mathbb{R},\mathbb{C}):=L^{1}_{2\pi\text{-per}}(\mathbb{R},\mathbb{C})/_{\sim}$ complex vector space $\|[f]\|_1 := \|f\|_1$ norm! identify: $L^{1}_{2\pi-per}(\mathbb{R},\mathbb{C}) \supseteq \mathcal{P}_{2\pi-per}(\mathbb{R},\mathbb{C})$

 $\mathcal{L}^{2}_{2\pi\text{-per}}(\mathbb{R},\mathbb{C}) = \left\{ f \in \mathcal{F}_{2\pi\text{-per}}(\mathbb{R},\mathbb{C}) \mid \int_{\mathbb{R}}^{\pi} |f(x)|^{2} dx < \infty \right\}$

solution: equivalence relation $f \sim g : \iff \|f - g\|_2 = 0$ set of all equivalence classes: $L^{2}_{2n-per}(\mathbb{R},\mathbb{C}):=L^{2}_{2n-per}(\mathbb{R},\mathbb{C})/_{\sim}$

 $\frac{\text{norm?}}{\|\mathbf{f}\|_{2}} := \sqrt{\int_{-\infty}^{\infty} |\mathbf{f}(\mathbf{x})|^{2} d\mathbf{x}}$

S complex vector space with inner product