ON STEADY

The Bright Side of Mathematics

Fourier Transform - Part 13

Theorem:

$$L_{2n-per}^{1}(\mathbb{R},\mathbb{C}) \text{ with inner product } \langle f, g \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} \overline{f(x)} g(x) \, dx$$

and ONS $(\dots, e_{-2}, e_{-4}, e_0, e_1, e_2, \dots)$ given by $e_k : x \mapsto e^{ikx}$
For $f \in L_{2n-per}^{1}(\mathbb{R},\mathbb{C})$ define: $\mathcal{F}_n(f) = \sum_{k=-n}^{n} e_k \langle e_k, f \rangle$.
Then: $\| f - \mathcal{F}_n(f) \| \xrightarrow{n \to \infty} 0$
 L^{1-norm}

(equivalent to Parseval's identity:
$$\| f \|^2 = \sum_{k=-\infty}^{\infty} |\langle e_k, f \rangle|^2$$
)

Fact: Continuous functions are dense in $L^{2}_{2r-per}(\mathbb{R},\mathbb{C})$, which means:

For
$$f \in L^{2}_{2\pi - per}(\mathbb{R}, \mathbb{C})$$
 and $\varepsilon > 0$, there is a 2π -periodic continuous function
 $g \colon \mathbb{R} \longrightarrow \mathbb{C}$ with $\|f - g\| < \varepsilon$.

Proposition:
$$\int_{2\pi - per} (\mathbb{R}, \mathbb{C})$$
 is dense in $L^{2}_{2\pi - per} (\mathbb{R}, \mathbb{C})$.

<u>Proof:</u> Let $\varepsilon > 0$, $f: [-\pi, \pi] \longrightarrow \mathbb{C}$ square integrable.

Then there is a continuous function
$$g: [-\pi, \pi] \rightarrow \mathbb{C}$$
 with $||f - g|| < \epsilon$.
domain compact
 \Rightarrow g is uniformly continuous : for given $\epsilon > 0$ there $\delta > 0$:
 $|x - \gamma| < \delta \implies |g(x) - g(\gamma)| < \epsilon$

We get:
$$|g(x) - h(x)| = |g(x) - g(y)|$$
 for $y \in \overline{I_j}$
 j
 $x \in I_j$
 $x \in I_j$
 $\forall z \in \overline{I_j}$
 $\forall z \in \overline{I_j}$
 $\forall z \in \overline{I_j}$

constant

In total:
$$\| \mathbf{f} - \mathbf{h} \| \leq \| \mathbf{f} - \mathbf{g} \| + \| \mathbf{g} - \mathbf{h} \| < C \cdot \varepsilon$$

$$= \left(\int_{-\pi}^{\pi} |\mathbf{g}(\mathbf{x}) - \mathbf{h}(\mathbf{x})|^2 \right)^2$$

<u>Theorem</u> (see above): For $\int \in L^{2}_{2n-per}(\mathbb{R},\mathbb{C})$: $\| f - \mathcal{F}_{n}(f) \| \xrightarrow{n \to \infty} 0$ Let $\varepsilon > 0$, $f \in L^{2}_{2\pi-per}(\mathbb{R},\mathbb{C})$. Choose $h \in S_{2\pi-per}(\mathbb{R},\mathbb{C})$ with $\|f-h\| < \varepsilon$. <u>Proof:</u>

 $\implies \lim_{n \to \infty} \| f - f_n(f) \| = 0$