Exercise 1. A new metric

Let d be a metric on the set X. Let a be a fixed point of X. Then we define $d_a: X \times X \to \mathbb{R}$:

$$d_a(x,y) := \begin{cases} d(x,a) + d(y,a), & \text{for } x \neq y, \\ 0, & \text{else.} \end{cases}$$

(a) Show that (X, d_a) is a metric space.

(

(b) Now let $X = \mathbb{C}$ with the standard metric and a = 1. Give the open ball

 $B_r(0) := \{ z \in \mathbb{C}, d_1(z, 0) \le r \}$

for each $r \geq 0$.

Exercise 2. Sets with topological notions

Let (X,d) be a metric space and $A, B \subseteq X$. Let us use the definition of ∂A from the video and define $A^{\circ} := A \setminus \partial A$ and $\overline{A} := A \cup \partial A$. Show the following statements:

- $(a) \ \partial A = \overline{A} \setminus A^{\circ}$
- (b) $\partial A = \partial (A^c)$ where A^c is the complement of A.
- (c) $(\overline{A})^c = (A^c)^\circ$ and $\overline{A^c} = (A^\circ)^c$
- $(d) \ (A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$
- (e) $(A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}$. Give also an explicit example where we have \neq in the relation.

 $(f) \ \overline{A \cup B} = \overline{A} \cup \overline{B}$

- (g) $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Give also an explicit example where we have \neq in the relation.
- (h) $\partial(A \cup B) \subseteq \partial A \cup \partial B$. Give also an explicit example where we have \neq in the relation.
- (i) $\partial(A \cap B) \subseteq \partial A \cap \partial B$. Give also an explicit example where we have \neq in the relation.
- (j) $\partial A \supseteq \partial(\overline{A})$. Give also an explicit example where we have \neq in the relation.

Exercise 3. Balls in metric spaces

Let (X, d) be a metric space, $x \in X$, and $\varepsilon > 0$. Show the following:

(a) $B_{\varepsilon}(x) := \{y \in X \mid d(x, y) < \varepsilon\}$ is an open set.

- (b) $B_{\varepsilon}(x) \coloneqq \{y \in X \mid d(x,y) \le \varepsilon\}$ is a closed set.
- (c) $S_{\varepsilon}(x) \coloneqq \{y \in X \mid d(x, y) = \varepsilon\}$ is a closed set.
- Give also an explicit example where $B_{\varepsilon}(x) \neq B_{\varepsilon}(x)$.