ON STEADY

Μ

The Bright Side of Mathematics

Functional analysis - part 24

Uniform boundedness principle (Banach-Steinhaus theorem)

X, Y normed spaces, X Banach space. $B(X,Y) := \{T: X \rightarrow Y \mid T \text{ linear + bounded }\}$

Theorem: For every subset $\mathcal{M} \subseteq \mathcal{B}(X,Y)$ holds:

Proposition: X, Y normed spaces, X Banach space. Let $T_n \in B(X,Y)$ for all $n \in \mathbb{N}$ with $\lim_{n \to \infty} T_n \times exists$ for all $x \in X$. Then: T: X \rightarrow Y defined by Tx := $\lim_{n \to \infty} T_n x$ is linear and bounded. <u>Proof:</u> $M := \{T_n | n \in IN\}$ is bounded pointwise on $X \implies$ There is a $C \ge 0$ with ||Tn|| < C for all n $\implies \|T\|_{X \to Y} = \sup \left\{ \|T \times \|_{Y} \mid \|X\|_{X} = 1 \right\} \leq C$ $\|\lim_{n\to\infty} T_n \times \|_{Y} = \lim_{n\to\infty} \|T_n \times \|_{Y} \le C$

