ON STEADY

The Bright Side of Mathematics

Functional analysis - part 26

Open mapping theorem (Banach-Schauder theorem)

What is an open map? Let (X, d_X) , (Y, d_Y) be two metric spaces. $f: X \to Y$ is called <u>open</u> if $A \subseteq X$ open in $X \Rightarrow f[A] \subseteq Y$ open in Y

<u>General example:</u> If $f: X \to Y$ is bijective and $f^{1}: Y \to X$ is continuous, then:

 $f: X \longrightarrow Y$ is an open map

Continuity of
$$\overline{f}^{1}$$
: $A \subseteq X$ open in $X \Longrightarrow (\overline{f}^{1})[A] \subseteq Y$ open in Y

Examples: (a) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$ open (b) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ not open $A = (-2, 2) \rightsquigarrow f[A] = [0, 4)$

<u>Open Mapping Theorem</u>: Let X, Y be Banach spaces. For $T \in \mathcal{B}(X, Y)$ holds:

T surjective <=> T open map