The Bright Side of Mathematics

The following pages cover the whole Functional Analysis course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: [https://tbsom.de/support](https://thebrightsideofmathematics.com/support)

Have fun learning mathematics!

1

Function	analysis	part 2
X set + d: $X \times X \longrightarrow \text{[0, so)}$ metric = metric space (X, d)		
Examples:	(o) $X = \mathbb{C}$, $d(x,y) = x-y $	$\frac{1}{x} \longrightarrow \frac{ x-y }{y}$
(b) $X = \mathbb{R}^n$, $d(x,y) = \sqrt{(x_a - y_a)^2 + (x_a - y_a)^2 + \dots + (x_n - y_a)^2}$	$\frac{[Equidataa]}{[mctate]}$	
(c) $X = \mathbb{R}^n$, $d(x,y) = \max \{ x_a - y_a , x_a - y_b , \dots, x_n - y_a \}$		
$\frac{x}{2}$	$\frac{1}{x} \longrightarrow \frac{d(x,y) = d(x,y)}{z}$	
(d) X any set $(\neq \emptyset)$, $d(x,y) = \begin{cases} 0 & x = y \\ 1 & x + y \end{cases}$	$\frac{d(\text{x}, \text{y}) = d(\text{x}, \text{x})}{\text{netice}}$	
$\frac{1}{x} \longrightarrow \frac{1}{x} \$		

First case: $X=y$: $d(x,y) = 0 \le d(x,z) + d(z,y)$
Second case: $X \neq y$: $d(x,y) = 1 = \begin{cases} d(x,z) \\ or \\ d(x,y) \end{cases} \le d(x,z) + d(z,y)$

Function	analysis	part 3
(X, d) metric space	$AA \times A$	
$B_c(x) := \{ ye X d(x,y) < e \}$	$(open ball of radius c>0 count at x)$	
$Notions:$	(1) Open sets:	$AA \times X$ is called <u>open</u> if with $B_c(x) \in A$.
(2) Boundary points:	$AA \times A + kne$ is an open-lut with $B_c(x) \in A$.	
(3) Clouds of sets:	$AA \times A + kne$ is called a <u>boundary point</u> point, $A \cdot A$ if for all $e > 0$: $B_c(x) \cap A \neq \emptyset$ and $B_c(x) \cap A^c \neq \emptyset$ and for all $e > 0$: $B_c(x) \cap A^c \neq \emptyset$ and for all $e > 0$: $B_c(x) \cap A^c \neq \emptyset$ and for all $e > 0$ if $A^c = X \setminus A$ if for all $e > 0$ if $A^c = X \setminus A$ if 	
(3) Closed sets:	$AA \cap BA = \emptyset$	
(4) Closure:	AA closed sets	$A \cup 3A = A$
(4) Closure:	$AA \cap A + A \cup 3A = A$	
(4) Closure:	$AA \cap A + A \cup 3A = x$	
(5) Closure:	$AA \cap A + A \cup 3A = x$	
(6)		

$$
A := (1,3) \subseteq X
$$
 open?
\nFor x $\in A$, x $\neq 3$, define $\varepsilon := \frac{1}{2} \min(|1-x|,|3-x|)$. Then $B_{\varepsilon}(x) \subseteq A$.
\n
$$
B_{\varepsilon}(x) \subseteq A \Rightarrow A
$$
 is open.

 (b) A is also closed!

 $\sqrt{2}$

(c)
$$
C := (1,2]
$$
, $3C = \{2\}$, $\overline{C} = C$

$$
(\Rightarrow)
$$
: Show if by contradiction! Assume there is $(a_n)_{n\in\mathbb{N}} \subseteq A$ with $\tilde{x} = \lim_{n\to\infty} a_n \notin A$.
\n $\Rightarrow B_{\varepsilon}(\tilde{x}) \cap A \neq \emptyset$ for all $\varepsilon > 0$. $\Rightarrow A^c$ is not open $\Rightarrow A$ is not closed

Functional analysis - part 5	
$\frac{F_{Xamp}[e:}{\sqrt{e}} \quad X = (0,3) \quad with \quad d(x,y) = x-y $	(...)
$(0,3) \quad is \quad closed:$	complement \emptyset is open
$... \quad result: \quad x \quad (0,3)$	Substituting $\mathbb{R} \times (0,3)$
$x \quad is \quad a \quad a \quad b \quad b \quad c \quad b \quad d(x,y) = x-y $	Substituting $\mathbb{R} \times (0,3)$
$x \quad is \quad 0 \quad x \quad b \quad d(x,x) = \limsup_{x \to a} \mathbb{R} \times (0,3)$	
$x \quad is \quad 0 \quad x \quad b \quad d(x,x) = \limsup_{x \to a} \mathbb{R} \times (0,3)$	Substituting $\mathbb{R} \times (0,3)$
$\frac{d}{dx} \quad \frac{d}{dx} \quad \frac{d}{dx}$	

Functional analysis - part 6	
Definition:	$TE\{R, C\}$. Let X be a F-vector space.
$A \text{ map } . : X \longrightarrow [0, \infty)$ is called norm if	
(a) $ x = 0 \iff x = 0$ (positive definite)	
(b) $ 2 \times = 2 x $ $3x$ $ x = R$, $x \in X$ (absolutely homogeneous)	
x	\overline{x}
xy	(C) $ x + y \le x + y $ $5x$ $ x \le 0$ $x/y \in X$ (triangle inequality)
y	$(X, .)$ is then called a normal space.
$max\{x, y\} := x - y $ $lim_{x \to \infty} x$ $lim_{x \to \infty} x/y$	
$d_{1+1}(x, y) := x - y $ $lim_{x \to \infty} x$ $lim_{x \to \infty} x/y$	
$d_{1+1}(x, y) := x - y $ $lim_{x \to \infty} x$	
$lim_{x \to \infty} x \in X$	

If $(X,d_{\|\cdot\|})$ is a complete metric space, then the normed space $(X, ||.||)$ is called a Banach space.

Claim:	$(\ell^p, \cdot _p)$ is a Banach space	
$Proof:$	\cdot ℓ^f is an $F - vector$ space and $ \cdot _p$ is a norm on it (see Later).	
\cdot Complexness:	Let $(x^{(k)})_{k\in\mathbb{N}}$ be a Cauchy sequence in ℓ^f .	
$x^{(1)} = (x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, \ldots)$		
$x^{(1)} = (x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, \ldots)$		
$x^{(1)} = (x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, \ldots)$		
$x^{(1)} = (x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, \ldots)$		
$x^{(2)} = (x_1^{(2)}, x_1^{(2)}, x_1^{(2)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, x_1^{(1)}, \ldots)$		
(ℓ^p, ℓ^p)	(ℓ^p, ℓ^p)	
(ℓ^p, ℓ^p)	(ℓ^p, ℓ^p)	(ℓ^p, ℓ^p)
(ℓ^p, ℓ^p)	(ℓ^p, ℓ^p)	(ℓ^p, ℓ^p)

 \implies $(x_m^{(k)})_{k\in\mathbb{N}}$ has a limit $\widetilde{x}_m \in \mathbb{F}$ Let $\epsilon > 0$, choose $K \in \mathbb{N}$ such that $\forall k, l \ge K : ||x^{(k)} - x^{(l)}||_p < \epsilon$ =: $\frac{\epsilon}{2}$ $\left\|x^{(k)} - \hat{x}\right\|_{\rho}^{\rho} = \sum_{n=1}^{\infty} |x_n^{(k)} - \hat{x}_n|^{\rho} = \lim_{N \to \infty} \sum_{n=1}^{N} |x_n^{(k)} - \hat{x}_n|^{\rho} = \lim_{N \to \infty} \lim_{l \to \infty} \sum_{n=1}^{N} |x_n^{(k)} - x_n^{(l)}|^{\rho}$ $$(\epsilon')^{\mathsf{f}}$$ Then $30r$ all $k \geq K$: $\|x^{(k)} - \tilde{x}\|_{p} \leq (\varepsilon)^{2} < \varepsilon$ And $\widetilde{x} = \widetilde{x - x^{(k)} + x^{(k)} - \epsilon}$ $\in l^{p}$ (it's a vector space!)

Function	analytics	part 8
• matrix	• matrix	the same as distinct
• norm	the same as distinct elements, length:	
• $irner$	the axures distances, length:	
• $irner$	the axures distance, length:	
• $(x,y) = x \cdot y \cdot cos(\alpha)^{1/2}$		
• $(x,y) = x \cdot y \cdot cos(\alpha)^{1/2}$		
• The $\sum R, C \}$. Let X be an $ f - vec$ space.		
• $Im P$	< x > \Rightarrow XX \rightarrow F is called an <u>inner product</u> on X if $(1 - \langle x, x \rangle) \ge 0$ for all x ∞ and $\langle x, x \rangle = 0$ for ∞ is $x = 0$ $[\stackrel{particle}{defial}]_{defial}$	
• (1) $\langle x, y \rangle = \langle y, x \rangle$ for $F = R$		
• $\langle x, y \rangle = \langle y, x \rangle$ for $F = C$		
• (3) $\langle x, y, y, y \rangle = \langle x, y, y + \langle x, y, y \rangle$ for all x, y ∞ , $\lambda \in F$		
• $\langle x, \lambda, y \rangle = \lambda, \langle x, y \rangle$ for all x, y ∞ , $\lambda \in F$		
• $\langle x, \lambda, y \rangle = \lambda, \langle x, y \rangle$ for all x, y ∞ , $\lambda \in F$		
• $\langle x, \lambda, y \rangle = \lambda, \langle x, y \rangle$ for all x, y ∞ , $\lambda \in$		

$$
\frac{\text{Function} \quad \text{analysics} - \text{part 9}}{\text{Example 9}}
$$
\n
$$
\frac{\text{Example 9}}{\text{Number 1 spaces}}
$$
\n(a) \mathbb{R}^{n} , \mathbb{C}^{n} with $\langle x, y \rangle = \sum_{i=1}^{n} \overline{x}_{i} y_{i}$ \n(b) $\int^{1} (N, \mathbb{F}) \text{ with } \langle x, y \rangle = \sum_{i=1}^{n} \overline{x}_{i} y_{i}$ \n
\n
$$
\frac{N_{\text{ob}}}{\text{ob}} \text{ a Hilbert space } \Rightarrow
$$
\n(c) $\mathbb{C}(\begin{bmatrix} 0, 1 \end{bmatrix}, \mathbb{F})$ with $\langle \frac{1}{3}, \frac{1}{3} \rangle = \int_{0}^{1} \overline{f(t)} g(t) dt$

$$
\left(\int_{0}^{L} (N, F), \langle \cdot, \cdot \rangle \right) \text{ is a Hilbert space:} \langle \cdot, \cdot \rangle: \int_{0}^{2} x \int_{0}^{1} \longrightarrow F^{\text{later}}
$$
\n
$$
(1) \text{ positive definite: } \langle x, x \rangle = \sum_{i=1}^{\infty} \overline{x}_{i} x_{i} = \sum_{i=1}^{\infty} |x_{i}|^{2} \ge 0
$$
\n
$$
\text{and } \langle x, x \rangle = 0 \implies |x_{i}|^{2} = 0 \text{ for all } i \in \mathbb{N}
$$
\n
$$
\Rightarrow x_{i} = 0 \text{ for all } i \in \mathbb{N} \implies x = 0.
$$

(1) (conjugate) symmetric:
$$
\overline{\langle y, x \rangle} = \sum_{i=1}^{\infty} \overline{y_i x_i} = \sum_{i=1}^{\infty} y_i \overline{x_i} = \langle x, y \rangle
$$

\n(3) $\lim_{\epsilon \to 1} \lim_{\epsilon \to 1} \frac{1}{\epsilon} \operatorname{argmin}_{\epsilon} \langle x, y + \overline{z} \rangle = \sum_{i=1}^{\infty} \overline{x_i} (y_i + \overline{z_i}) = \sum_{i=1}^{\infty} \overline{x_i} y_i + \sum_{i=1}^{\infty} \overline{x_i} z_i$
\n $= \langle x, y \rangle + \langle x, z \rangle$
\n $\langle x, \lambda \cdot y \rangle = \sum_{i=1}^{\infty} \overline{x_i} (y_i) = \lambda \cdot \sum_{i=1}^{\infty} \overline{x_i} y_i = \lambda \cdot \langle x, y \rangle$

Function	analytic = part 10
Cancelry = Schwartz inequality : Let $(X, \langle \cdot, \cdot \rangle)$ be an inner product space	
and $ X := \sqrt{x}, y>$. Then $f_0 = dU \times y \in X$:	
$ \langle x, y \rangle $ $\leq x \cdot y $	
and $ \langle x, y \rangle $ $\leq x \cdot y $	
and $ \langle x, y \rangle $ = $ x \cdot y $ $\leq \frac{x}{y}$, $\frac{x}{y}$ linearly dependent	
$\frac{\rho_{\text{rad}}}{\sqrt{x}}$: $\frac{4^{st}}{\sqrt{x}}$ case : $x = 0$: $ \langle x, y \rangle $ = 0 = $ x \cdot y $	
2^{sd} case $x \neq 0$: $\hat{x} := \frac{x}{ x }$, $y_{ } := \langle \hat{x}, y \rangle \hat{x}$, $y_{ } := \langle y - \langle \hat{x}, y \rangle \hat{x}, y \rangle$	
$0 \leq y_{ } ^2 = y - y_{ } ^2 = y - \langle \hat{x}, y \rangle \hat{x}, \langle \hat{x}, y \rangle \hat{x}$	
$= \langle y - \langle \hat{x}, y \rangle \hat{x}, y \rangle = \langle y - \langle \hat{x}, y \rangle \hat{x}, \langle \hat{x}, y \rangle \hat{x}$	
$= \langle y - \langle \hat{x}, y \rangle \hat{x}, y \rangle = \langle \hat{y}, \langle \hat{x}, y \rangle \hat{x}, \langle \hat{x}, y \rangle \hat{x}$	
$= y ^2 - (\langle \langle \hat{x}, y \rangle \hat{x}, y \rangle) + \langle \langle \hat{x}, y \rangle \hat{x}, y \rangle) + \langle \hat{x}, y \rangle \hat{x} ^2$	
$= y ^2 - (2 \$	

$$
y = \lim_{n \to \infty} \frac{1}{n} y^n = \frac{1}{n} \sqrt{2} \sqrt{y} \sqrt{1}
$$

 \triangle -

$$
\frac{d}{dx} \int_{\text{Sor } ||\cdot||} \cdot \frac{||x+y||^2}{\int_{\text{Solving } x} dx} = \sqrt{x+y} \cdot x+y = ||x||^2 + 2Re(\langle x, y \rangle) + ||y||^2
$$

\n
$$
\leq ||x||^2 + 2 |\langle x, y \rangle| + ||y||^2
$$

\n
$$
\leq ||x||^2 + 2 ||x|| \cdot ||y|| + ||y||^2 = (||x|| + ||y||)^2
$$

Function	analysis	part 11
Orthogonality: Let $(X, \langle \cdot, \cdot \rangle)$ be	\mathbb{Q}_{min}	
On inner product space.	\mathbb{Q}_{min}	
(a) $x_i y \in X$ are called orthogonal if $\langle x_i y \rangle = 0$. Write $x_i y$.		
(b) For $U_i V \subseteq X$, write $U_i V$ if $x_i y$ for all $x_i U_i y \in V$.		
(c) For $U \subseteq X$, the orthogonal complement of U as		
$\bigcup_{i=1}^{n} x_i \in X \mid \langle x_i w \rangle = 0$ for all $w \in U$		
$\bigcup_{i=1}^{n} x_i \in X \mid \langle x_i w \rangle = 0$ for all $w \in U$		
1	(1) $\{0\}^L = \chi$, $\chi^L = \{0\}$	
(2) $U_i \subseteq V$ $\implies U_i \subseteq V$		
1	$\sum_{i=1}^{n} x_i V_i = \chi(x_i V) = 0$ for all $w \in V$	
2	$\exists x_i V \in V$	
3	$\exists x_i V \in V$	
4	$\exists x_i V \in V$	
5	$\langle x_i w \rangle = 0$ for all $w \in V$	

 (3) $\begin{array}{c}\n\mathbb{L}\updownarrow \\
\downarrow \downarrow \\
\downarrow \downarrow\n\end{array}$ $||x+y||_{\langle x \rangle}^{2} = ||x||_{\langle x \rangle}^{2} + ||y||_{\langle x \rangle}^{2}$ $x + y$ then ('Tythagorean theorem')

$$
U^{\perp}
$$
 is always closed

Remark:

\n- Sequentially Continuous if for all
$$
\tilde{x} \in X
$$
 and $(\tilde{x}_n)_{n \in \mathbb{N}} \subseteq X$ with $x_n \stackrel{n \to \infty}{\longrightarrow} \tilde{x}$ holds $f(x_n) \stackrel{n \to \infty}{\longrightarrow} f(\tilde{x})$.
\n

Fact: For metric spaces, continuous and sequentially continuous are equivalent. Examples: (a) (X, dx) discrete metric space, (Y, dy) any metric space \Rightarrow all $f: X \rightarrow Y$ are continuous (b) (X,d_X) , (Y,d_Y) metric spaces, $Y_0 \in Y$ fixed.

=> $f:X\rightarrow Y$, $X\mapsto Y_0$ is always continuous.

(c)
$$
(X_{i}||\cdot||)
$$
 normed space, $Y = \mathbb{R}$ with standard metric

\n $\Rightarrow \quad \int : X \rightarrow \mathbb{R}$ is continuous\n $x \mapsto \|\mathbf{x}\|$ \n $\frac{\partial \alpha \delta f}{\partial x} \colon$ Let $(x_{n})_{n \in \mathbb{N}} \subseteq X$ sequence with $\lim_{\Delta x \to \infty} \frac{x}{\Delta x}.$ Then:\n
$$
\int_{x} (x_{n}) = \|x_{n}\| = \|x_{n} - \tilde{x} + \tilde{x}\| \le \|x_{n} - \tilde{x}\| + \|\tilde{x}\| = \underbrace{\int_{x} (x_{n}, \tilde{x}) + \int_{x} (\tilde{x})}_{n \to \infty} \implies \lim_{\Delta x \to \infty} f(x_{n}) \le \int_{x} (\tilde{x})
$$
\n $\Rightarrow \lim_{n \to \infty} f(x_{n}) \le \int_{x} (\tilde{x})$ \n $\Rightarrow \quad \int_{x} (\tilde{x}_{n}) + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} (\tilde{x}) \le \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} (\tilde{x}_{n}) + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} (\tilde{x}_{n}) + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} \cdot \frac{1}{\Delta x} + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} \cdot \frac{1}{\Delta x} + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} \cdot \frac{1}{\Delta x} + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} \cdot \frac{1}{\Delta x} + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} \cdot \frac{1}{\Delta x} + \lim_{n \to \infty} f(x_{n})$ \n $\Rightarrow \quad \int_{x} \cdot \frac$

$$
\leq ||x_{0}|| \cdot ||x_{n} - \tilde{x}|| \xrightarrow{n \to \infty} 0
$$

Analyously, g: X \to \mathbb{C} , x \mapsto \langle x, x_{0} \rangle is continuous.

 $Claim: (X, \langle \cdot, \cdot \rangle)$ inner product space, $U \subseteq X$. Then U^{\perp} is closed. $\underbrace{\text{Proof}:}_{\text{i}} \quad \text{Let} \quad (x_n)_{n \in \mathbb{N}} \subseteq U^{\perp} \quad \text{with} \quad \text{limit} \quad \tilde{x} \in X.$

 $C.S.$

 (d)

$$
\Rightarrow \langle x_{n}, u \rangle = 0 \quad \text{for all} \quad u \in U
$$
\n
$$
\Rightarrow \lim_{h \to \infty} \langle x_{n}, u \rangle = 0 \quad \text{for all} \quad u \in U
$$
\n
$$
\Rightarrow \langle \tilde{x}, u \rangle = 0 \quad \text{for all} \quad u \in U \quad \Rightarrow \quad \tilde{x} \in U^{\perp}
$$

 $h \rightarrow \infty$

Proposition:	Let $(X, \cdot _X)$, $(Y, \cdot _Y)$ two normed spaces, $T: X \longrightarrow Y$ linear.
Then the following claims are equivalent:	
(a) T is continuous.	
(b) T is continuous at $x=0$.	
(c) T is bounded.	

$$
\frac{\partial \mathbf{u}_{\bullet}f_{\cdot}}{f_{\cdot}} \quad (a) \Rightarrow (b) \lor
$$
\n
$$
\frac{\partial \mathbf{u}_{\bullet}f_{\cdot}}{f_{\cdot}} \quad (b) \Rightarrow (c) : \text{ with } \mathbf{u}_{\bullet} \text{ is a } \mathbf{v}_{\bullet} \text{ with } \mathbf{v}_{\bullet} \text{ with } \mathbf{u}_{\bullet} \text{ with } \mathbf{v}_{\bullet} \text{ with } \math
$$

Functional analysis = part 14
$Example: X = (C(\begin{bmatrix} 0.4 \end{bmatrix}, F), \cdot _{\infty}), Y = (F, \cdot)$
$For \neq K \text{ with } g(t) \neq 0 \text{ for all } t \in [0, \sqrt{3}] \text{ define}$
$T_3: X \rightarrow Y$ by $T_3(\overline{y}) := \int_a^1 3(t) \cdot f(t) dt$
$ T_3 = \sup \left\{ \frac{ T_3(\overline{y}) }{ F _{\infty}} \right \int_{\mathbb{F} \times \sqrt{y}} f \cdot \frac{1}{y} dt \right\}$
$= \sup \left\{ \frac{ T_3(\overline{y}) }{ F _{\infty}} \right \int_{\mathbb{F} \times \sqrt{y}} f \cdot \frac{1}{ F _{\infty}} = 4 \right\}$
$= \sup \left\{ \left \int_a^x 3(t) \cdot f(t) dt \right \right \int_{\mathbb{F} \times \sqrt{y}} f \cdot \frac{1}{ F _{\infty}} = 4 \right\}$
$\leq \int_a^1 3(t) \cdot f(t) dt$
$\leq \int_a^1 3(t) \cdot f(t) dt$
$= \int_a^1 3(t) \cdot f(t) dt$
$= \int_a^1 3(t) \cdot f(t) dt$
$= \int_a^1 3(t) \cdot f(t) dt$
$= \int_a^1 3(t) \cdot f(t) dt$
$= \int_a^1 3(t) \cdot f(t) dt$
$= \int_a^1 3(t) \cdot f(t) dt$

Check

Function	analysis	Part A5																			
\n $\frac{\text{Four's representation.}}{\text{Let } (\chi, \langle \cdot, \cdot \rangle)$ \n	\n $\text{Let } (\chi, \langle \cdot, \cdot \rangle)$ \n	\n $\text{Let } (\chi, \langle \cdot, \cdot \rangle)$ \n	\n $\text{Let } (\chi, \langle \cdot, \cdot \rangle)$ \n	\n $\text{Let } \chi \text{ is the same function.}$ \n	\n $\text{Here, for each continuous linear function.}$ \n	\n $\text{Here, for each polynomial, } \chi \text{ is the same function.}$ \n	\n $\text{Here, for each polynomial, } \chi \text{ is the same function.}$ \n														
\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n Proof. \n	\n <math< td=""></math<>

 $l(x)$

$$
\Rightarrow \langle x_{\ell} - \tilde{x}_{\ell}, x \rangle = 0 \quad \text{for all } x \in X.
$$

$$
\Rightarrow \langle x_{\ell} - \tilde{x}_{\ell}, x_{\ell} - \tilde{x}_{\ell} \rangle = 0 \Rightarrow x_{\ell} = \tilde{x}_{\ell}
$$

(3) Operator norm:
$$
||\ell|| = \sup \{ |\ell(x)| | ||x||_{x} = \lambda \} = \sup \{ |\langle x_{\ell}, x \rangle| ||x||_{x} = \lambda \}
$$

\n $\leq ||x_{\ell}||$
\n $||\ell|| \geq |\ell(\frac{x_{\ell}}{\|x_{\ell}\|})| = |\langle x_{\ell}, \frac{x_{\ell}}{\|x_{\ell}\|} \rangle| = ||x_{\ell}||$

Fundamental analysis — part 16	
Comparhess	$\mathbb{R}^n \supseteq A$
A is Compact = $\int_{\text{only in } \mathbb{R}^n} A$ is bounded	

Examples:	(a)	(R, d _{eucl.}) ,	$A = [0, 1]$	compact by Bol _{2ano-Weierstrass theorem.}	
(b)	(R, d _{discr.}) ,	$A = [0, 1]$	not compact because :		
The sequence	$(x_n)_{n\in \mathbb{N}}$	$\leq A$	with	$X_n = \frac{A}{n}$	Satisfies
$d_{discr}(X_n, x_m) = 1$	for all $n, m \in \mathbb{N}$	with $n \neq m$.			
\Rightarrow no convergent Subsequence					

$$
Q \qquad \qquad \vdots \qquad \qquad \vdots
$$

<u>'Yroposition:</u> Let (X, d) be a metric space and $A \subseteq X$ compact. $closed$ and bounded. There is an $x \in X$
and an $\epsilon > 0$ such that $B_{\epsilon}(x) \supseteq A$ \bigcap Then A is \sum_{x}

Proof:	\n $\text{Let } A \subseteq X$ be compact.\n
(1) Let $(x_n)_{n \in \mathbb{N}} \subseteq A$ be convergent with $\lim_{x \to \infty} f(x)$ with $\lim_{x \to \infty} f(x)$.\n	
$\lim_{x \to \infty} f(x_n) = \sum_{x \to \infty} f(x)$ is a convergent subsequence $(x_{n_k})_{k \in \mathbb{N}}$ with $\lim_{x \to \infty} f(x)$.\n	
(1) Contra position: A is not bounded as $\sum_{x \to \infty} f(x)$ given a A , there are $x_n \in A$ with $d(a_1, x_n) > n$.\n	
\implies For any subsequence $(x_n)_{k \in \mathbb{N}}$ and any point $b \in A$:\n	
$n_K < d(a_1, x_n) \leq d(a_n b) + d(b_1, x_n)$ \n	
$\implies n_K - d(a_n b) \leq d(b_1, x_n)$ \n	
$\implies d(b_1, x_n) \leq d(b_2, x_n)$	

$$
Final analysis - part 17
$$
\n
$$
Area la - Ascolic theorem
$$

Example: (a)
$$
(X, || \cdot ||)
$$
 normed space with $dim(X) < \infty$ (always Banach space).

\n $A \subseteq X$: A compact $\iff A$ closed + bounded

\n(b) $(\ell^p(W), || \cdot ||_p)$ for $p \in [1, \infty)$ (Banach space)

\n $A := \{xe \ l^p(W) \mid ||x||_p \leq 1\}$ closed + bounded

\n $e_1 := (1, 0, 0, 0, \ldots) \in A$

\n $e_1 := (0, 1, 0, 0, \ldots) \in A$

\n $e_3 := (0, 0, 1, 0, \ldots) \in A$

\n \vdots

\n \vdots

\n \Rightarrow no convergent subsequence

Continuous functions:

\n
$$
\begin{array}{ccc}\n(C([0,1]) , || \cdot ||_{\infty}) , & || \xi ||_{\infty} := \sup \{ |f(t)| | t \in [0,1] \} \\
& & \searrow\n\end{array}
$$

f is called uniformly continuous: (Using E-8-characterisation) \forall \exists \forall : $|t_1 - t_2| < \delta$ \Rightarrow $|f(t_1) - f(t_2)| < \epsilon$ $s > 0$ $t_1, t_2 \in [0, 1]$ $E>0$

$$
A \subseteq C([0,1])
$$
 is called uniformly equicontinuous:
\n $\forall \exists \forall \forall \forall : |t_{1}-t_{2}| < \delta \implies |f(t_{1})-f(t_{2})| < \epsilon$
\n $\epsilon > 0$ $s > 0$ $t_{1}, t_{2} \in [0,1]$ $\int \epsilon A$
\nor equivalently $\sup_{\delta \in A} |f(t_{1})-f(t_{2})| \xrightarrow{|t_{1}-t_{2}| \to 0} O$

Examples:	(a)	$A := \left\{ \int \int \int \int f(t_1) - \int f(t_2) \right\}$	$ f _{\infty} \leq 1 \right\}$	$\frac{1}{1} \left\{ \int_{t_1}^{t_1} \int_{t_2}^{t_1} \int_{t_3}^{t_4} \int_{t_4}^{t_5} \int_{t_5}^{t_6} \int_{t_6}^{t_7} \int_{t_7}^{t_8} \int_{t_8}^{t_9} \int_{t_9}^{t_1} \int_{t_1}^{t_2} \int_{t_2}^{t_3} \int_{t_3}^{t_4} \int_{t_4}^{t_5} \int_{t_5}^{t_6} \int_{t_6}^{t_7} \int_{t_7}^{t_8} \int_{t_8}^{t_9} \int_{t_9}^{t_9} \int$
-----------	-----	--	----------------------------------	---

Fundional analysis	Part 18	
Compart operations:	$T: F \xrightarrow{\alpha} F$	Linear
$\Rightarrow T$ is continuous/bounded		
$\Rightarrow T$ is continuous/bounded		
$\Rightarrow T[3,0] \subseteq F$	Comped	
However:	$I: I^{\rho}(N) \longrightarrow I^{\rho}(N)$, $\rho \in [1,\infty)$, $\rho \circ [3,0]$	closed until ball in $I^{\rho}(N)$
$x \longmapsto x \xrightarrow{\Rightarrow} T[3,0] = \mathbb{I} \setminus [0,0]$	not equal to $I^{\rho}(N)$	
$\mathbb{Q}e\{\text{inition:} \quad \text{Let } (X, \ \cdot \ _{X})$, $(Y, \ \cdot \ _{Y})$ be two normal spaces. A bounded linear operator		
$T: X \rightarrow Y$ is called $\frac{\text{com}e}{\text{com}e} \xrightarrow{\text{com}e} \text{if}$		
$\frac{\text{col}}{\text{col}(\text{col})} \xrightarrow{\text{col}(\text{col})} \text{if}$	of	

$$
\begin{array}{lll}\n\text{Example:} & \text{Integrad operator} & T_k: C([0,1]) \longrightarrow C([0,1]) & \text{for } k \in C([0,1] \times [0,1]) \\
& \text{with } \text{supremum norm} \cup \text{lim} \\
& \text{for } k \in C([0,1] \times [0,1]) \\
& \text{if } \text{if } k \in C([0,1] \times [0,1])\n\end{array}
$$

 $\frac{1}{2}$ $\frac{1}{2}$ $uniformely$ continuous: $\mathsf k$ i s

$$
\left| \left(\prod_{k} f \right) (s_{i}) - \left(\prod_{k} f \right) (s_{i}) \right| = \left| \int_{0}^{1} \left(k(s_{i}, t) f(t) - k(s_{i}, t) f(t) \right) dt \right|
$$

$$
\leq \int_{0}^{1} \left| k(s_{i}, t) - k(s_{i}, t) \right| \cdot \left| f(t) \right| dt < \epsilon \cdot \|f\|_{\infty}
$$

$$
A := T_{k} [3,0]
$$
 We have:
\n
$$
\begin{array}{ccc}\n\bigvee & \exists & \forall & \forall : |s_{1}-s_{1}| < \delta \implies |g(s_{1})-g(s_{2})| < \epsilon \\
\epsilon > 0 & s_{1}, s_{1} \in [0,1] & g \in A\n\end{array}
$$
\n
$$
\Rightarrow T_{k} [3,0]
$$
 is uniformly equivalent to
\n
$$
\underline{\text{Bound } } \mathbb{E} \math
$$

Function	analysis	part 13
\n $\frac{Hilder's inequality}{Ter xer^m}$ \n	\n $\int_{\mathcal{F}} \text{and } \rho \in (1, \infty)$ \n	
\n $\frac{Hilder's inequality}{Ter xer^m}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$ \n	\n $\frac{1}{2}$ \n	
\n $\frac{1}{2}$		

Proof of Hölder's inequality:
$$
1^{st}
$$
 case: $x = 0$ or $y = 0$
 2^{nd} case: $\frac{1}{\|x\|_{\rho} \cdot \|y\|_{\rho}}$ $\|x\|_{1} = \frac{1}{\|x\|_{\rho} \cdot \|y\|_{\rho}}$ $\sum_{j=1}^{n} |x_{j}y_{j}| = \sum_{j=1}^{n} \frac{|x_{j}|}{\|x\|_{\rho} \|y\|_{\rho}}$

$$
\frac{\text{Hunkional } \text{amlysis } - \text{part } 20}{\text{Mult}(N) \cdot \text{formal } \text{Im}(N) \cdot \text{formal
$$

$\Rightarrow \left(\sum_{j=1}^n |x_j| + |y_j| \right) \quad \Rightarrow \quad \leq \left(\sum_{j=1}^n |x_j| + |y_j| \right)$

 \parallel x

 $(* * :$

 \mathbf{U}

L

◢ $\overrightarrow{0}$ = 1

homomorphism + bijective + inverse map is also homomorphism isomorphism \blacksquare

$$
\frac{\frac{}{\text{Isomorphism } \text{for Banach spaces } X, Y:}{\int_{X} : X \longrightarrow Y \text{ with}: \text{Linear+bijective + } ||f(x)||_{Y} = ||x||_{X}}}{\int_{0}^{x} f(x) dx \text{ called isometric isomorphism}}
$$

Example: (a) $S_R: \ell^p(M) \longrightarrow \ell^p(M)$, $(x_1, x_2, x_3, ...) \mapsto (0, x_1, x_2, ...)$ \Rightarrow linear, $||S_R \times ||_\rho = || \times ||_\rho$ not survective \Rightarrow not an isomorphism

$$
\begin{array}{lll}\n\text{(b)} & \text{S}: \text{if } (\mathcal{Z}) \longrightarrow \text{if } (\mathcal{Z}) \text{ , } (\dots, x_1, x_0, x_1, x_1, \dots) \mapsto (\dots, x_1, x_1, x_0, x_1, \dots) \\
\text{if } \text{if } x \dots & \text{if } x \dots & \text{if } x \dots \text{if } x \dots \text{if } x \dots & \text{if } x \dots & \text{if } x \dots \text{if } x \dots \text{if } x \in \mathbb{R}\n\end{array}
$$

$$
\Rightarrow |f(x)| = |f_{\lim_{k \to \infty}} f_{k}(x)| = |f_{\lim_{k \to \infty}} f_{k}(x)| \leq \lim_{k \to \infty} ||f_{k}||_{X \to F} ||x||_{X}
$$

\n
$$
\Rightarrow ||f||_{X \to F} \leq \tilde{C} < \infty
$$

\n
$$
\frac{1}{\log |f_{\lim_{k \to \infty}} f_{k}(x) - f_{\lim_{k \to \infty}} f_{k}(x)| \leq \epsilon
$$

\n
$$
\Rightarrow \lim_{k \to \infty} |f_{\lim_{k \to \infty}} f_{k}(x) - f_{\lim_{k \to \infty}} f_{k}(x)| \leq \epsilon \Rightarrow ||f_{n} - f||_{X \to F} \leq \epsilon
$$

Function	analysis	part 23				
Dual space:	X	normal space				
\downarrow	\downarrow	\vdots	\downarrow	\downarrow		
Example:	$X = f^{[f]}(N)$	for	$p \in (1, \infty)$			
\leftarrow	\uparrow	\uparrow	\uparrow	\uparrow	\uparrow	\downarrow
Time is on isometric isomorphic						
$T: f^{[f]}(N)$	\downarrow where $p^{1} \in (1, \infty)$ Halder conjugate $(\frac{1}{p} + \frac{1}{p^{1}} = 1)$					
There is on isometric isomorphic	$(1 + \sum_{i=1}^{n} x_i \cdot y_i)$	\downarrow	\downarrow	\downarrow		
$\frac{T_0 \cdot \frac{1}{2} \cdot \frac$						

 (2) T is Linear. (3) $\|\text{Tx}\|_{l^{e}(\text{N})\to\text{F}} = \sup \{ |(\text{Tx})(y)| | \|y\|_{p} = 1 \} \leq \|x\|_{p}$

$$
\mathbb{E} \left[\mathbf{y} \right]_{\mathbb{L}^{n}} \longrightarrow \mathbb{E} \left[\
$$

 $T: I^r$

 $\overline{(\ }$

 (\mathcal{F}) $\|\mathsf{Tx}\|_{\ell^{p}(\mathbb{N})\to\mathbb{F}}\leq\|\mathsf{x}\|_{\ell^{1}}\leq\|\mathsf{y}'\|_{\ell^{p}(\mathbb{N})\to\mathbb{F}}=\|\mathsf{Tx}\|_{\ell^{p}(\mathbb{N})\to\mathbb{F}}$ isometry $\sqrt{\frac{2}{\ell^{p}(\mathbb{N})\to\mathbb{F}}}$

Functional analysis - part 24 Uniform boundedness principle Banach–Steinhaus theorem normed spaces Banach space linear + bounded Theorem: For every subset holds More concretely: Proposition normed spaces Banach space Then: Proof: Banach-Steinhaus

Functional analysis - part 25

 $\underline{\mathsf{Hahn-Banach\,\, theorem}}$ $(X, \|\cdot\|_X)$ normed space \sim > $(X, \|\cdot\|_{X})$ $U \subseteq X$ subspace, u' : $U \longrightarrow F$ continuous linear functional Then: There exists $x' : \overline{X} \longrightarrow \mathbb{F}$ continuous linear functional with $x'(u) = u'(u)$ for all ueU , $||x'||_X = ||w'||_W$.

 Δ **Pplications c** $(X, \|\cdot\|_X)$ normed space

(a) For all
$$
x \times x \times a
$$
, there is an $x' \in X'$ with $||x||_x = 1$ and $x'(x) = ||x||_x$.
\n
$$
\frac{Proof:}{x} \text{ Define } u': U \longrightarrow F \text{ continuous } X
$$
\n
$$
\frac{1}{x} \text{ with } \frac{1}{x} \text{ and } \frac{1}{x} \text{ with } \frac{1}{x} \text{ and } \frac{1}{x} \text{ with } \frac
$$

Functional analysis - part 26

Open mapping theorem (Banach-Schauder theorem)

What is an open map? Let (X, d_X) , (Y, d_Y) be two metric spaces. **is called open if open in open in**

General example: If $f: X \rightarrow Y$ is bijective and $f': Y \rightarrow X$ is continuous, then: **is an open map Continuity of open in open in**

Examples: (a) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^3$ open (b) $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto x^2$ not open $A = (-2, 2) \implies f[A] = [0, 4)$

Open Mapping Theorem: Let X, Y be Banach spaces. For TE $B(X, Y)$ holds:

surjective open map

Functional analysis	Part 27	
Bounded inverse theorem:	\times , γ Banach spaces, $T \in \mathcal{B}(X, Y)$.	
Then:	T bijective \Rightarrow $T^{-1} \in \mathcal{B}(Y, X)$ (It's continuous)	
$\text{Proof:$	T bijective \Rightarrow T open map \Rightarrow T^{-1} continuous	
Counterexample:	$\times = (C([0,1]), . _{\infty})$, $Y = (\{\text{fe } C'([0,1]) \text{f}(0) = 0\}, . _{\infty})$ not complete	
$(T \text{f})(t) = \int_{0}^{t} f(s) ds$ linear and bounded and bijective		
$ T \text{f} _{\infty} = \sup_{t \in [0,1]} \int_{0}^{t} f(t) ds \le f _{\infty} \Rightarrow T _{X \to Y} \le 1$		
Take $\int_{k}(t) = \sin(kt)$	$ T _{\infty} = \int_{0}^{t} f(t) \cdot \int_{0}^{t} f(t) dt$	
$(T \text{f})$ (t) = $\frac{1}{k} (1 - \cos(kt))$	$-\sqrt{1 - \frac{1}{k} (1 - \frac{1}{k} (1 - \cos(kt)))}$	≤ 1

Take

$$
\mathbf{T}_{\mathcal{J}_{k}}^{1} = \mathbf{f}_{k} \implies \|\mathbf{T}^{1}\|_{\mathbf{Y}\rightarrow\mathbf{X}} \geq \frac{\|\mathbf{T}^{1}\mathbf{f}_{\mathcal{J}_{k}}\|_{\infty}}{\|\mathbf{g}_{k}\|_{\infty}} = \frac{\|\mathbf{f}_{k}\|_{\infty}}{\|\mathbf{g}_{k}\|_{\infty}} \geq \frac{k}{2} \xrightarrow{k \rightarrow \infty} \infty
$$

Functional analysis - part 28

Spectrum for bounded linear operators

Recall:
$$
A \in \mathbb{C}^{n \times n}
$$
 matrix with *n* rows and *n* columns.
\n $\lambda \in \mathbb{C}$ is called an eigenvalue of \overline{A} if:
\n $\exists x \in \mathbb{C}^n \setminus \{0\} : A x = \lambda x$
\n $\Leftrightarrow \exists x \in \mathbb{C}^n \setminus \{0\} : (A - \lambda I) x = 0$
\n $\Leftrightarrow \ker(A - \lambda I) \neq \{0\}$ $\Leftrightarrow \text{map } x \mapsto (A - \lambda I) x \text{ not injective}$
\nRank-nullity theorem: For any matrix $M \in \mathbb{C}^{m \times n}$:

$$
\dim (Ran(M)) + \dim (ker(M)) = n
$$

Now: Let X be a complex Banach space and $T: X \rightarrow X$ be a bounded linear operator.

Definition: The spectrum of T is defined by: $\sigma(T) := \{ \lambda \in \mathbb{C} \mid (T - \lambda T) \text{ not bijective} \}$ The <u>resolvent set of T</u> is defined by: $\rho(T) := \{ \lambda \in \mathbb{C} \mid (T - \lambda I) \}$ bijective and $(T - \lambda I)^{-1}$ bounded ?

 $\sigma(T) = \sigma_{\rho}(T) \cup \sigma_{c}(T) \cup \sigma_{r}(T)$ **We have the disjoint union:** $\mathbb{Q}(\top) := \left\{ \lambda \in \mathbb{C} \mid (\top - \lambda \top) \text{ not injective} \right\}$ **point spectrum**

bounded inverse theorem

$$
\sigma(\top) = \mathbb{C} \setminus \rho(\top)
$$

continuous
$$
\mathbb{C}(\top) := \left\{ \lambda \in \mathbb{C} \mid (\top - \lambda \mathbb{I}) \text{ injective but not surjective with } \overline{Ran(\top - \lambda \mathbb{I})} = \lambda \right\}
$$

residual
spectrum
$$
\sigma(\top) := \{ \lambda \in \mathbb{C} \mid (\top - \lambda \mathbb{I}) \text{ injective but not surjective with } \overline{Ran(T-\lambda \mathbb{I})} \neq \chi \}
$$

Functional analysis - part 29

Let X be a complex Banach space and T: $X \rightarrow X$ be a bounded linear operator.

 $\lambda \in \sigma(T)$ \iff $(T - \lambda)$ not invertible

Finite-dimensional example: $X = \mathbb{C}^n$, $\overline{Tx} = \begin{pmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & \lambda_4 \\ \vdots & \lambda_n \end{pmatrix} = \begin{pmatrix} \lambda_1 \lambda_2 & \lambda_2 \lambda_3 \\ \vdots & \lambda_n \lambda_n \end{pmatrix}$ $\implies \mathfrak{J}(\top) = \left\{ \lambda_1, \lambda_2, ..., \lambda_n \right\} = \mathfrak{J}(\top) \qquad \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, ..., \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$

are eigenvectors

 $Infinite-dimensional example: X = l^{P}(N)$, $\rho \in [1, \infty)$

$$
T x = \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \end{pmatrix} = \begin{pmatrix} \lambda_1 x_1 \\ \lambda_2 x_2 \\ \vdots \end{pmatrix}
$$

Formally: For $\lambda_1, \lambda_2, ... \in \mathbb{C}$ with $sup_{j \in \mathbb{N}} |\lambda_j| < \infty$, define: $T : \ell^{f}(\mathbb{N}) \rightarrow \ell^{f}(\mathbb{N})$ $(\top_{\mathsf{X}})_j := \lambda_j x_j$

- \bullet $e_{1} = (1, 0, 0, ...)$ is an eigenvector with eigenvalue λ_{1}
- $e_i = (0, 1, 0, ...)$ is an eigenvector with eigenvalue λ_i

 \Rightarrow $\nabla(T) \supseteq {\lambda, \lambda, \ldots} = \sigma_r(T)$

Let
$$
\mu \in \mathbb{C}
$$
 be a number with $\mu \notin \{\lambda_1, \lambda_2, ...\}$ but $\mu \in \{\lambda_1, \lambda_2, ...\}$, then $\mu = 0$

$$
\implies
$$
 T- μ is injective

Show: T-
$$
\mu
$$
 is not surjective
\nProof: Assume T- μ is surjective \implies T- μ is bijective \implies (T- μ)¹ bounded
\n \implies $||(T-\mu)^{1}|| \ge ||(T-\mu)^{1}e_{j}||_{H^{1}(N)} = ||(X_{j}-\mu)^{1}e_{j}||_{H^{1}(N)} = |(X_{j}-\mu)^{1}|$
\n $= \frac{1}{|X_{j}-\mu|}$ for a subsequence $\frac{1}{\mu}$

Result:

$$
\underline{d}t: \nabla(T) = \left\{ \lambda_{1}, \lambda_{2}, \ldots \right\} \cup \left\{ \mu \in \mathbb{C} \mid \mu \notin \left\{ \lambda_{1}, \lambda_{2}, \ldots \right\} \wedge \mu \in \left\{ \lambda_{1}, \lambda_{2}, \ldots \right\} \right\}
$$
\n
$$
\nabla_{P}(T) = \nabla_{P}(T)
$$

Functional analysis - part 30 not invertible invertible complex Banach space bounded linear operator Proposition: (a) is an open set is a closed set (b) For (c) The map is analytical. Locally, it can be expressed as a Taylor series. Proof: Choose and set Let's take any with Calculate: Neumann series: with is invertible because is invertible is open (a) Also: (c) Now for above (b)

For (b): Assume
$$
\mathfrak{F}(T) = \emptyset \implies \mathfrak{f}(T) = \mathbb{C}
$$

\nReminder: The map $\mathfrak{f}(T) \to \mathfrak{F}(X)$
\n $\lambda \mapsto (T - \lambda)^{-1}$ is analytic.
\nTake any $\ell \in \mathfrak{B}(X)^{1}$: $\mathfrak{f}_{\ell}: \mathbb{C} \to \mathbb{C}$
\n $\lambda \mapsto \ell((T - \lambda)^{-1})$
\nanalytic function (holomorphic function)
\nwe get that \mathfrak{f}_{ℓ} is a bounded entire function.
\n $\begin{array}{c}\n\text{smallic function: } \left[\frac{1}{(1 - \lambda)^{-1}} - \frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{(1 - \lambda)^{k}} \text{ as } k\right] \\
\text{for } |\lambda| \ge 2 \cdot ||T|| : \quad \left[\frac{1}{(1 - \lambda)^{-1}} - \frac{1}{\lambda} \sum_{k=0}^{\infty} \frac{1}{(1 - \lambda)^{k}} \text{ as } k\right] \\
\le \frac{||\ell||}{||T||} \le \frac{||\ell|| \cdot ||(1 - \lambda)^{-1}||}{\le \frac{1}{2}\ln 1} \le \frac{||\ell||}{\ell} \le \frac{1}{2}\n\end{array}$ \n \Rightarrow $\frac{1}{2}\frac{||\ell||}{||T||}$

$$
\begin{aligned}\n\oint_{\ell} (0) &= \ell \left(T^{1} \right) \\
\parallel \\
\oint_{\ell} (\lambda) &= \ell \left((T - \lambda)^{1} \right) \\
&= \ell \left(\sum_{k=0}^{\infty} (T)^{k+1} (\lambda)^{k} \right) \\
&= \sum_{k=0}^{\infty} \ell \left(T^{k+1} \right) \cdot \lambda^{k} \\
\implies \ell \left(T^{-2} \right) &= O \quad \text{for all } \ell \in \mathcal{B}(X)\n\end{aligned}
$$

Hahn-Banach theorem

$$
\Rightarrow \qquad \qquad \overrightarrow{T}^2 = 0 \qquad \Rightarrow \qquad \times = \{0\}
$$

Functional analysis – part 32
\n $r(T) T: X \rightarrow X$ \n $r(T) \leq \ T\ $ \n
\n $r(T) \leq \ T\ $ \n
\n \forall is a complex Hilbert space\n
\n $\text{Definition:$ \n $\text{Let } X \text{ be a Hilbert space and } T: X \rightarrow X \text{ a bounded linear operator.}$ \n
\n \forall $\$

Proposition: T normal \Rightarrow $\Gamma(T) = ||T||$

Functional analysis - part 33

Compact operator: $(X, \| \cdot \|_X)$, $(Y, \| \cdot \|_Y)$ normed spaces. $T: X \rightarrow Y$ bounded linear operator is called compact if $\boxed{\mathbb{E}(\mathfrak{o})}$ is compact. **Example:** matrix $A \in \mathbb{C}^{n \times n}$ (linear operator $\mathbb{C}^{n} \longrightarrow \mathbb{C}^{n}$, $x \mapsto Ax$) **compact** We know: $\sigma(A) = \{ \lambda_1, \lambda_2, ..., \lambda_k \}$ finite, non-empty set $\ker(A - \lambda_i)$ eigenspaces (finite-dimensional) $Proposition: \begin{pmatrix} X, \left\| \cdot \right\|_X \end{pmatrix}$ Banach space, $T: X \rightarrow X$ compact operator. Then: **(a) countable set (finite is possible)** (b) $\dim(X) = \infty \implies 0 \in \sigma(T)$ **(c) could be empty or finite. Otherwise: no accumulation points other than 0**

(d) Each
$$
\lambda \in \Gamma(T) \setminus \{0\}
$$
 is an eigenvalue of T $(\lambda \in \Gamma_T(T))$
with dim $(ker(T-\lambda)) < \infty$

Example:

\n
$$
\begin{aligned}\n\chi &= \ell^{1}(\mathbb{N}) \quad , \quad T_{X} = \left(\frac{1}{j} \times j\right)_{j \in \mathbb{N}} \\
&= \left[\frac{1}{j} \cdot \left(\frac{1}{j}\right)\right] \quad |\gamma_{j}| \leq \frac{1}{j} \quad \text{for all } j \right] \\
&= \sqrt{\frac{1}{j}} \quad \text{for all } j \text{ and } j \text{ and } j \\
\text{where } \mathcal{F} \text{ is a compact operator.} \\
\mathcal{T} &= \left(\begin{array}{ccc}\n\frac{1}{j} & \frac{1}{j} & \frac{1}{j} \\
\frac{1}{j} & \frac{1}{j} & \frac{1}{j} \\
\frac{1}{j} & \frac{1}{j} & \frac{1}{j}\n\end{array}\right) \\
\mathcal{T} &= \frac{1}{k} e_{k} \quad \text{(eigenvector)} \quad \text{dim}\left(\ker\left(\tau - \frac{1}{k}\right)\right) = 1 \\
\mathcal{T} &= \frac{1}{k} \cdot \frac{1}{k} \cdot \frac{1}{k} \cdot \dots \left\{\n\begin{array}{ccc}\n0 & 0 \\
0 & 0\n\end{array}\right.\n\end{aligned}
$$

Functional Analysis - Part 34

Spectral theorem of compact operators Let X be a <u>complex</u> Hilbert space and $T: X \rightarrow X$ be a compact operator. Assume that \top is self-adjoint $(\top^* = \top)$ or normal $(\top^* \top = \top \top^*)$. Then there is an orthonormal system $\{e_i | i \in I\}$ with $I \subseteq N$ and a sequence $(\lambda_i)_{i \in I}$ in $\mathbb{C} \setminus \{0\}$ with $\lambda_i \stackrel{i \to \infty}{\longrightarrow} 0$ (if I infinite) **such that:** $X = \text{Ker}(T) \oplus \frac{1}{\text{Span}(e_i | ieI)}$ $\left\{\nabla \times \mathbf{r} + \mathbf{r} \times \mathbf{r} = \mathbf{r} \times \mathbf{r$ **for each there is unique!** and $f \times = \sum_{k} A_k e_k \langle e_k, x \rangle$ for **eigenvalue eigenvector to** and $\boxed{\|\mathsf{T}\|} = \sup_{\mathsf{k} \in \mathsf{T}} |\lambda_{\mathsf{k}}|.$