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Functional analysis - part 24

Uniform boundedness principle
Banach–Steinhaus theorem

normed spaces Banach space

linear + bounded

For every subsetTheorem: holds

More concretely:

Proposition normed spaces Banach space

Then:

Proof:
Banach-Steinhaus



Functional analysis - part 25

Hahn–Banach theorem normed space

subspace continuous linear functional

Then: There exists continuous linear functional

with for all

Applications normed space

For all there is an with and

Proof Define
continuous
linear functional

Hahn-Banach

(b) 
separates the points of For

there is an with

Proof

(c) For all

Proof

(d) Let be a closed subspace with

Then there exists with and

Proof

normed space

There is a with

Define for



Functional analysis - part 26

Open mapping theorem (Banach-Schauder theorem)

What is an open map? Let be two metric spaces.

is called open if

open in open in

General example: If is bijective and is continuous, then:

is an open map

Continuity of open in open in

Examples: (a) open

(b) not open

Open Mapping Theorem: Let be Banach spaces For holds

surjective open map



Functional analysis - part 27

Bounded inverse theorem: Banach spaces

Then: bijective (It's continuous)

Proof: bijective
open mapping theorem

open map continuous

Counterexample: not complete

linear and bounded and bijective

Take

not continuous



Functional analysis - part 28

Spectrum for bounded linear operators

Recall: matrix with    rows and    columns.

is called an eigenvalue of    if:

map not injective

Rank-nullity theorem: For any matrix

Now: Let     be a complex Banach space and               be a bounded linear operator.

Definition: The spectrum of T is defined by: not bijective

The resolvent set of T is defined by:   bijective

and   bounded
bounded inverse theorem

We have the disjoint union:

not injective

injective but not surjective with

point
spectrum

continuous
spectrum

residual
spectrum

injective but not surjective with



Functional analysis - part 29

Let     be a complex Banach space and               
             be a bounded linear operator.

not invertible

Finite-dimensional example:

are eigenvectors

Infinite-dimensional example:

Formally: For   with              , define:

is an eigenvector with eigenvalue

is an eigenvector with eigenvalue



Let be a number with                      but

e.g.

then

is injective

Show: is not surjective

Proof: Assume is surjective is bijective

bounded inverse
theorem

bounded

for a subsequence

Result:



Functional analysis - part 30

not invertible

 invertible

complex Banach space

bounded linear operator

Proposition: (a) is an open set

is a closed set

(b)
For

(c)
The map

is analytical.

Locally, it can be expressed
as a Taylor series.

Proof: Choose              and set

Let's take any          with

Calculate:

Neumann series: with is invertible because

is invertible is open (a)

Also:
(c)

Now for
above

(b)



Functional analysis - part 31

Spectral radius: complex Banach space

bounded linear operator

Theorem: complex Banach space bounded linear operator

Then: (a) is compact

(b)

(c)

Proof: For          with

is bounded



For (b): Assume 

The map

is analytic.

Reminder:

Take any

analytic function (holomorphic function)

We get that     is a bounded entire function.

For

Liouville's theorem

is constant

for all

Hahn-Banach theorem

(part 25)



Functional analysis - part 32

bounded linear operator

For normal operators:

is a complex Hilbert space

Definition: be a Hilbert space and                a bounded linear operator.Let

The bounded linear operator defined by

for all

is called the adjoint operator of

Definition: be a Hilbert space and                a bounded linear operator.Let

is called (1) self-adjoint if

(2) skew-adjoint if

(3) normal if

Proposition: normal



Functional analysis - part 33

Compact operator: normed spaces

bounded linear operator is called compact if

is compact.

Example: matrix linear operator

compact

We know: finite, non-empty set

eigenspaces (finite-dimensional)

Proposition: Banach space compact operator. Then:

(a) countable set (finite is possible)

(b)

(c)
could be empty or finite.

Otherwise:
no accumulation points
other than 0

(d) Each is an eigenvalue of

with



Example:

for all 

Hilbert cube

compact set

is a compact operator

eigenvector



Functional Analysis - Part 34

Spectral theorem of compact operators

be a complex Hilbert space andLet be a compact operator.

Assume that    is self-adjoint or normal

Then there is an orthonormal system with

and a sequence in with if   infinite

such that:

Ker(  ) Span( 

orthogonal sum: means:

for each there is

unique!

and for 

eigenvalue
eigenvector to 

and


