Functional analysis - part 25

Hahn-Banach theorem
$$(X, \|\cdot\|_X)$$
 normed space $\longrightarrow (X', \|\cdot\|_{X'})$ $U \subseteq X$ subspace, $u' : U \longrightarrow \mathbb{F}$ continuous linear functional Then: There exists $x' : X \longrightarrow \mathbb{F}$ continuous linear functional with $x'(u) = u'(u)$ for all $u \in U$, $\|x'\|_{X'} = \|u'\|_{u'}$.

Applications: (X, || · ||x) normed space

(a) For all
$$x \in X$$
, $x \neq 0$, there is an $x' \in X'$ with $\|x'\|_{X'} = 1$ and $x'(x) = \|x\|_{X}$.

Proof: Define
$$u': U \longrightarrow \mathbb{F}$$

$$\lambda \cdot x \longmapsto \lambda \cdot \|x\|_{X} \text{ linear functional}$$

$$\Rightarrow x': X \longrightarrow \mathbb{F} \text{ with } x'(x) = u'(x) = \|x\|_{X}$$

$$\|x'\|_{X'} = \|u'\|_{U'} = 1$$

(b)
$$X'$$
 separates the points of X : For $x_1, x_2 \in X$, $x_1 \neq x_2$, there is an $x' \in X'$ with $x'(x_1) \neq x'(x_2)$

Proof:
$$X := x_2 - x_4 \Rightarrow x'(x) = ||x||_X \neq 0 \Rightarrow x'(x_4) \neq x'(x_2)$$

(c) For all $x \in X : ||x||_X = \sup\{|x'(x)| \mid x' \in X', ||x'|| = 1\}$

(c) For all
$$x \in X$$
: $\|x\|_{X} = \sup\{|x'(x)| \mid x' \in X', \|x'\| = 1\}$

Proof:
$$\|x'\|_{X'} \ge \frac{\|x'(x)\|}{\|x\|_{X}} \implies 1 = \sup_{\|x'\|=1} \|x'\|_{X'} \ge \sup_{\|x'\|=1} \frac{\|x'(x)\|}{\|x\|_{X}}$$

$$\implies \|x\|_{X} \ge \sup_{\|x'\|=1} |x'(x)|$$
Use (a):

Use (a):
$$||x||_X \leq \sup_{\|x'\|=1} |x'(x)|$$

(d) Let
$$U \subseteq X$$
 be a closed subspace, $X \in X$ with $X \notin U$.

Then there exists
$$X' \in X'$$
 with $x'|_{U} = 0$ and $x'(x) \neq 0$.

$$\frac{\text{Proof:}}{\|[2]\|_{X/u}} = \left\{ \begin{bmatrix} 2 \\ 2 \end{bmatrix} \middle|_{2 \in X} \right\}, \quad \begin{bmatrix} 2 \end{bmatrix} := \left\{ 2 + u \middle|_{u \in U} \right\}$$

$$\|[2]\|_{X/u} := \inf_{u \in U} \|2 + u\|_{X} \quad \sim > \left(X/U \middle|_{X/U} \right) \text{ normed space}$$

There is a
$$y' \in (X_U)'$$
 with $y'([x]) \neq 0$.

Define $x' \in X'$ by $x'(2) := y'([2])$ for $2 \in X$.