Functional analysis - part 28

Spectrum for bounded linear operators

Recall: A E C matrix with n rows and n columns.

 $\lambda \in \mathbb{C}$ is called an eigenvalue of A if:

$$\exists x \in \mathbb{C}^n \setminus \{0\} : A \times = \lambda \times$$

$$\iff \exists x \in \mathbb{C}^n \setminus \{o\} : (A - \lambda I) x = 0$$

$$\iff$$
 $\ker(A - \lambda I) \neq \{0\}$ \iff $\max x \mapsto (A - \lambda I)x \text{ not injective}$

Rank-nullity theorem: For any matrix $M \in \mathbb{C}^{m \times n}$:

$$\dim(\operatorname{Ran}(M)) + \dim(\ker(M)) = n$$

<u>Now:</u> Let X be a complex Banach space and $T: X \longrightarrow X$ be a bounded linear operator.

Definition: The spectrum of T is defined by:
$$\Gamma(T) := \{ \lambda \in \mathbb{C} \mid (T - \lambda I) \text{ not bijective} \}$$

bounded inverse theorem

$$\Longrightarrow \qquad \text{of}(T) = \mathbb{C} \setminus f(T)$$

We have the disjoint union: $\Gamma(T) = \Gamma_{\rho}(T) \cup \Gamma_{\sigma}(T) \cup \Gamma_{\sigma}(T)$

point spectrum
$$\mathcal{O}_{\mathbf{P}}(T) := \{ \lambda \in \mathbb{C} \mid (T - \lambda I) \text{ not injective } \}$$

continuous spectrum
$$\mathcal{G}_{c}(T) := \{ \lambda \in \mathbb{C} \mid (T - \lambda I) \text{ injective but not surjective with } \overline{\mathcal{R}_{an}(T - \lambda I)} = X \}$$

residual spectrum
$$\Gamma(T) := \{ \lambda \in \mathbb{C} \mid (T - \lambda I) \text{ injective but not surjective with } \overline{Ran}(T - \lambda I) \neq X \}$$