ON STEADY

The Bright Side of Mathematics

Hilbert Spaces - Part 2
Definition (Hilbert space):
$$(X, \langle \cdot, \rangle)$$
 F-vector space
 $\langle \cdot, \cdot \rangle : X \times X \to F$ inner product
where $(X, ||\cdot||)$ is a Banach space
with respect to the norm $||x|| := \sqrt{\langle x, x \rangle}$
Example: (a) \mathbb{C}^{N} with standard inner product
(b) \mathbb{R}^{n} with given inner product
(b) \mathbb{R}^{n} with given inner product
(c) $\int_{1}^{t} (\mathbb{N}_{1}\mathbb{C}) := \sum_{n \in \mathbb{N}}^{t} (X_{n})_{n \in \mathbb{N}} | X_{n} \in \mathbb{C}$ and $\sum_{n \in \mathbb{N}}^{\infty} ||x_{n}|^{2} < \infty \frac{1}{2}$
with inner product: $\langle \gamma, x \rangle = \sum_{n \in \mathbb{N}}^{\infty} \overline{\gamma_{n}} \cdot x_{n}$ (convergent series)
(c) (Ω, Λ, μ) measure space
 $\int_{1}^{t} (\Omega, \mu) := \{ f: \Omega \to \mathbb{C} \text{ measurable } | \int_{\Omega} |f|^{2} d\mu < \infty \}$
 $||f|| := \left(\int_{\Omega} |f|^{2} d\mu$ not a norm in general! $\widehat{1} = \widehat{1} =$

We get a <u>Hilbert space</u> with the following inner product:

$$\langle [g], [f] \rangle := \int \overline{g(\omega)} f(\omega) d\mu(\omega)$$