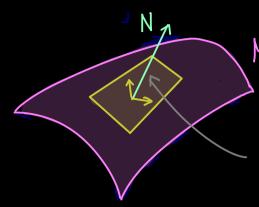


## Manifolds - Part 37



 $M \subseteq \mathbb{R}^3$  orientable Riemannian manifold of dimension 2

Definition:

Let  $\widetilde{M}$  be a Riemannian manifold and  $M \subseteq \widetilde{M}$ .

A map 
$$N: M \longrightarrow T\widetilde{M}$$
  
 $\rho \longmapsto N(\rho) \in T_{\rho}\widetilde{M}$ 

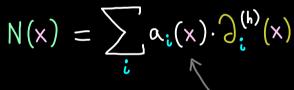
and 
$$N(p) \in (T_p M)^{\perp} \setminus \{0\}$$
 (see  $T_p M \subseteq T_p \widetilde{M}$ )

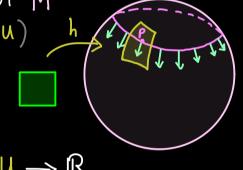


is called a normal vector field.

(orthogonal w.r.t. gp)

We call it <u>continuous</u> at p if for a chart (U,h) of  $\widetilde{M}$  holds:





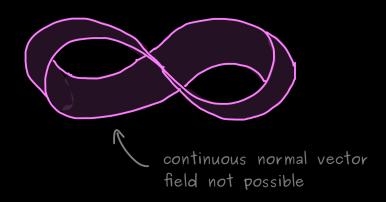
continuous functions  $U \longrightarrow \mathbb{R}$ 

We call it a continuous unit normal vector field if

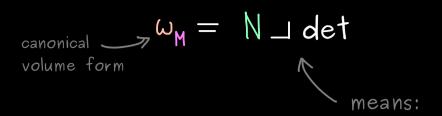
- N is continuous at every p∈ M
- $\|N(x)\| = \sqrt{g_x(N(x),N(x))} = 1$  for all  $x \in M$ .

Important fact:  $M \subseteq \mathbb{R}^n$  (n-1)-dimensional submanifold:

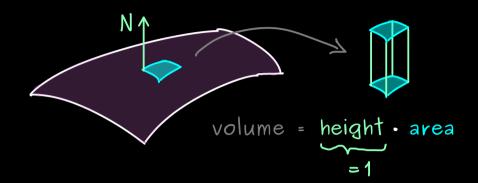
(a) M is orientable  $\iff$  M has a continuous unit normal vector field



(b) If N is a continuous unit normal vector field, then:

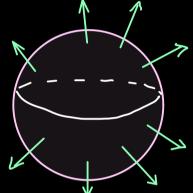


$$\omega_{M}(x)(V_{1},...,V_{n-1}) = det(N(x),V_{1},...,V_{n-1})$$



Example: 
$$S^2 \subseteq \mathbb{R}^3$$
,

$$N(x) = x$$



parameterization:

$$\frac{1}{\Phi}(\theta, \varphi) = \begin{pmatrix} \sin(\theta) \cos(\varphi) \\ \sin(\theta) \sin(\varphi) \\ \cos(\theta) \end{pmatrix}$$

$$=$$
  $sin(a)$