Definition:

Conclusion:

The Bright Side of Mathematics

n -dimensional

Manifolds - Part 29

M smooth manifold of dimension $n \implies T_p M$

vector space $\omega: M \longrightarrow \bigcup_{\rho \in M} Alt^{k}(T_{\rho}M)$ $p \mapsto \omega_p = \omega(p) \in Alt^k(T_pM)$

is called a k-form on M.

is called a
$$k$$
-form on M .

We also define: $\omega \wedge \eta$ as $(\omega \wedge \eta)(\rho) := \omega(\rho) \wedge \eta(\rho)$

$$f^*\omega \qquad \text{as} \qquad (f^*\omega)(\rho) := (df_\rho)^*\omega(f(\rho))$$

$$f: N \longrightarrow M \text{ smooth}$$

Basis elements:

basis of
$$T_{p}M$$
: $(\partial_{1},\partial_{2},...,\partial_{n})$ with $\partial_{j}:=\varphi_{*}(e_{j})=d\varphi_{h(p)}(e_{j})$ basis of $(T_{p}M)^{*}=Alt^{1}(T_{p}M)$: $(dx_{p}^{1},dx_{p}^{2},...,dx_{p}^{n})$ defined by: $dx_{p}^{j}(\partial_{k})=\delta_{k}^{j}=\{1,j=k,0\}$

 $(dx_{\rho}^{1} \wedge dx_{\rho}^{2}, dx_{\rho}^{1} \wedge dx_{\rho}^{3}, dx_{\rho}^{2} \wedge dx_{\rho}^{3})$

 $\omega(\mathbf{p}) = \sum_{\mu_1 < \dots < \mu_k} \omega_{\mu_1, \mu_2, \dots, \mu_k}(\mathbf{p}) \cdot d\mathbf{x}_{\mu_1}^{\mu_1} \wedge d\mathbf{x}_{\mu_2}^{\mu_2} \wedge \dots \wedge d\mathbf{x}_{\mu_k}^{\mu_k}$

 $\omega_{\mu_1,\mu_2,\cdots,\mu_k}: U \longrightarrow \mathbb{R}$ component functions Definition: . If all component functions are differentiable at p, then ω is differentiable at ρ . • If ω is differentiable at all $p \in M$, If ω is differentiable at all $p \in M$, then ω is called a differential form on M. $\Omega^{\mathbf{k}}(M) := C^{\infty}(M)$

Each k-form on M can locally be written as: