

Ordinary Differential Equations - Part 3

ODE:
$$\dot{X} = w(t, X)$$
 (explicit, of first order)

Example: (a)
$$\dot{X} = \lambda \cdot X$$
 autonomous

(b)
$$\dot{x} = t$$
 \longrightarrow not autonomous

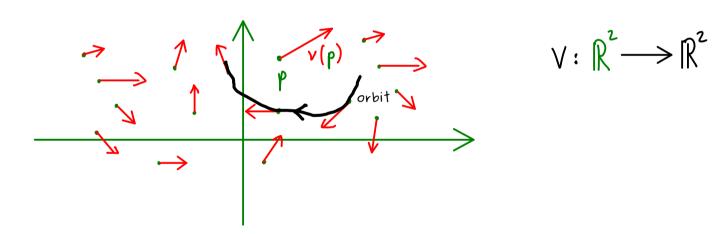
(c)
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ -x_1 \end{pmatrix}$$
 autonomous

Definition:

autonomous system:
$$\dot{X} = V(X)$$
 with $V: \mathcal{N} \longrightarrow \mathbb{R}^n$ often: $\mathcal{N} = \mathbb{R}^n$ often: $\mathcal{N} = \mathbb{R}^n$ often: $\mathcal{N} = \mathbb{R}^n$ often:

V continuous

Directional field:



$$\forall: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

Examples: (a) $\dot{X} = \sin(X)$, $V: \mathbb{R} \longrightarrow \mathbb{R}$, $V(X) = \sin(X)$

(1)
$$\alpha(t) = 0$$
 for all $t \in \mathbb{R}$ is a solution: $\dot{\alpha}(t) = \sin(\alpha(t))$

(2)
$$\alpha(t) = \hat{\pi}$$
 for all $t \in \mathbb{R}$ is a solution.

(3) A solution with
$$\alpha(0) = \frac{\pi}{2}$$
 is monotonically increasing with $\lim_{t\to\infty} \alpha(t) = \pi$.

(b)
$$\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_1 \\ x_1 \end{pmatrix}$$
, $\forall : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, $(x_1, x_2) \longmapsto \begin{pmatrix} -x_1 \\ x_1 \end{pmatrix}$

