

Ordinary Differential Equations - Part 8

Questions: Initial value problem: $\dot{x} = V(x)$ with $V: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ continuous $X(0) = X_0$

- Does a solution exist?
- What is the domain of definition?
- Uniqueness of solutions?

Examples: (a)
$$\dot{x} = x^2$$
, $x(0) = 1$ \Longrightarrow solution exists: $x(t) = \frac{1}{1-t}$

only defined for t < 1

(b)
$$\dot{x} = V(x)$$
, $x(0) = 0$ with $V(x) = \begin{cases} \sqrt{|x|}, & x \ge 0 \\ -\sqrt{|x|}, & x < 0 \end{cases}$

We find at least two solutions: $\alpha(t) = 0$ for all t

$$\tilde{\alpha}(t) = \begin{cases} 0, & t \leq 0 \\ \frac{1}{4}t^2, & t > 0 \end{cases}$$

In general:

directional field

existence: does each point have an orbit?

uniqueness: can two orbits cross?