

Ordinary Differential Equations - Part 8

Questions: Initial value problem: $\dot{X} = V(X)$ with $V: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ continuous $X(0) = X_0$

- Does a solution exist?
- What is the domain of definition?
- Uniqueness of solutions?

Examples: (a)
$$\dot{x} = x^{1}$$
, $X(0) = 1$ $\stackrel{\text{part } s}{\Longrightarrow}$ solution exists: $\alpha(t) = \frac{1}{1-t}$
only defined for $t < 1$
 $(b) \dot{x} = V(x)$, $X(0) = 0$ with $V(x) = \begin{cases} \sqrt{|x|}, & x \ge 0\\ -\sqrt{|x|}, & x < 0 \end{cases}$

We find at least two solutions: $\alpha(t) = 0$ for all t

$$\widetilde{\alpha}(t) = \begin{cases} 0 , t \leq 0 \\ \frac{1}{4}t^{2} , t > 0 \end{cases}$$

existence: does each point have an orbit?

uniqueness: can two orbits cross?