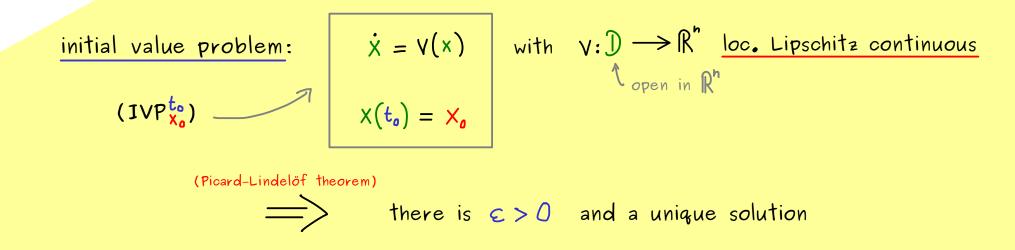
ON STEADY

The Bright Side of Mathematics

Ordinary Differential Equations - Part 14



Extension of solution: We say a solution
$$\widehat{\chi}: \mathbb{I} \longrightarrow \mathbb{D}$$
 extends $\chi: (t_{\bullet} - \varepsilon, t_{\bullet} + \varepsilon) \longrightarrow \mathbb{D}$

if
$$I \supseteq (t_{\bullet} - \varepsilon, t_{\bullet} + \varepsilon)$$
 and $\widetilde{\alpha} \Big|_{(t_{\bullet} - \varepsilon, t_{\bullet} + \varepsilon)} = \alpha$.

 $\alpha: (t_{\bullet} - \varepsilon, t_{\bullet} + \varepsilon) \longrightarrow \mathbb{D}$

Maximal solutions: A solution $\alpha : \mathbb{T} \longrightarrow \mathbb{D}$ is called maximal if there is no extension.

<u>Proposition:</u> $(IVP_{X_0}^{t_0})$ for $V: \mathbb{D} \longrightarrow \mathbb{R}^n$ loc. Lipschitz continuous

has exactly one maximal solution (defined on an open interval).

$$\frac{\text{Proof:}}{\overset{\text{X}_{0}}{\overset{\text{Y}_{1}}{\overset{Y}{\overset{Y}_{1}}{\overset{Y}{\overset{Y}{\overset{Y}_{1}}{\overset{Y}{\overset{Y}_{1}}{\overset{Y}{\overset{Y}_{1}}{\overset{Y}{\overset{Y}}{\overset{Y}{\overset{Y}{\overset{Y}_{1}}{\overset{Y}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y}}{\overset{Y}}{\overset{Y}{\overset{Y}}{\overset{Y$$

here is
$$\varepsilon > 0$$
 such that $\alpha_{t}|_{(t_{t}^{-}\varepsilon, t_{t}^{+}\varepsilon)} = \alpha_{t}|_{(t_{t}^{-}\varepsilon, t_{t}^{+}\varepsilon)}$
 $\left\{ \int \text{ open interval } | I \supseteq \int \supseteq (t_{t}^{-}\varepsilon, t_{t}^{+}\varepsilon) \text{ with } \alpha_{t}|_{U} = \alpha_{t}|_{U} \right\} = \mathcal{M}$
 $(t_{-}, t_{s}) := \bigcup \int \int \text{ gives maximal open interval}$
Show: $t_{+} = b$ Assume: $t_{+} \neq b$
Then: $\alpha_{t}(t) = \alpha_{t}(t)$ for all $t \in (t_{-}, t_{*})$
 $\int t \Rightarrow t_{*} \int$
 $\hat{\chi}_{0} = \alpha_{t}(t_{+}) = \alpha_{t}(t_{*})$ because of continuity on I
Look at $(IVP_{\chi_{0}}^{t_{*}})$: uniqueness of solution implies:
 $\alpha_{t}(t) = \alpha_{t}(t)$ for $t \in (t_{t}^{-}\varepsilon, t_{t}^{+}\varepsilon)$
 $\Rightarrow (t_{-}, t_{*}^{+}\varepsilon) \in \mathcal{M}$ \mathcal{G}
Conclusion: $(t_{-}, t_{*}) = I$ and
 $\alpha_{t}|_{I} = \alpha_{t}|_{I} \Rightarrow \alpha : I_{t} \cup I_{t} \rightarrow \mathcal{D}$
Define: $\left\{ I \text{ open interval } \right\}$ there is a solution $\alpha : I \rightarrow \mathcal{D}$ for $(IVP_{\chi_{0}}^{t_{0}}) \right\} = \mathcal{J}'$
 $\bigcup I$ open interval for maximal solution \Box

If the maximal solution is defined on I = R, then it's called Definition:

a global solution.