ON STEADY

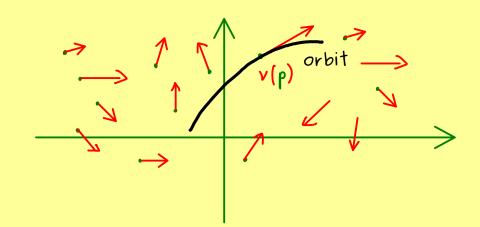
The Bright Side of Mathematics

Ordinary Differential Equations - Part 15

$$\dot{X} = V(X)$$
 vector field

 $V: \mathcal{D} \longrightarrow \mathbb{R}^n$

open in \mathbb{R}^n



For $V: \mathbb{D} \longrightarrow \mathbb{R}^n$ loc. Lipschitz continuous:

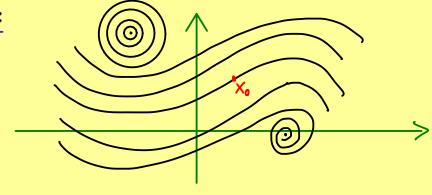
$$\dot{X} = V(X)$$

$$X(t_0) = X_0$$

$$\beta(\tilde{t}) := \kappa(\tilde{t} + t_o)$$

 $\beta: \widetilde{T} \longrightarrow \mathbb{D}$ is a <u>maximal</u> solution (IVP $_{X_0}^0$)

Phase portrait:



orbit at X.

$$\left\{ \varkappa(\mathfrak{t}) \mid \mathfrak{t} \in \mathbb{I} \text{ where } \varkappa \colon \mathbb{I} \to \mathbb{D} \right\}$$
is the max. solution of $(\mathbb{I} \vee P_{\chi_{\mathfrak{a}}}^{\mathfrak{o}})$

For $V: \mathbb{D} \longrightarrow \mathbb{R}^n$ loc. Lipschitz continuous, the phase portrait satisfies: Proposition:

- (a) For all $X \in \mathbb{D}$ there is an orbit $O \ni X$.
- (b) Two orbits O_1 , O_2 satisfy: $O_1 \cap O_2 \neq \emptyset \implies O_1 = O_2$