

0

The Bright Side of Mathematics

BECOME A MEMBER

ON STEADY

Ordinary Differential Equations - Part 16

 $\dot{\mathbf{x}} = \mathbf{v}(\mathbf{x}), \quad \mathbf{v}: \mathbb{D} \longrightarrow \mathbb{R}^{n}$ open in \mathbb{R}^{n}

<u>Definition</u>: A global solution $\alpha : \mathbb{R} \longrightarrow \mathbb{D}$ of $\dot{x} = v(x)$ is called:

• fixed point if $\alpha(t) = \alpha(0)$ for all $t \in \mathbb{R}$.

• <u>periodic</u> if there is a T>O with $\alpha(t+T) = \alpha(t)$ for all $t \in \mathbb{R}$. a <u>period</u>

 $\dot{X} = V(X)$ $X(0) = X_0$

<u>Proposition</u>: For $V: \mathbb{D} \longrightarrow \mathbb{R}^n$ loc. Lipschitz continuous,

there are three options for the maximal solution \ltimes of

- (a) 🗙 is injective
- (b) \propto is fixed point
- (c) & is periodic

Example:

 $\ddot{x} = -\sin(x) \longrightarrow (x_1) - (x_2) - v(x_3)$

$$\begin{pmatrix} x_2 \end{pmatrix} = \begin{pmatrix} -\sin(x_1) \end{pmatrix} = \sqrt{(x_1, x_2)}$$

Do we have $f: \mathbb{R}^2 \longrightarrow \mathbb{R}$ with $f(\alpha(t)) = \text{constant for all } t$?

