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Ordinary Differential Equations - Part 1

search for a function
that satisfies this?

Ordinary Differential Equations

Real Analysis Linear Algebra

Start Learning Mathematics

Other examples: (a) (harmonic oscillator)

(b)
system of differential equations

(second order derivatives)

Topics: - system of ordinary differential equations (ODE)

- solution methods

- existence and uniqueness of solutions
- linear ordinary differential equations (matrix exponential function)



Ordinary Differential Equations - Part 2

Definitions: For (interval, open set, union intervals,…)

is   -times continuously differentiable

continuous functions

Ordinary differential equation:

continuous

Example:

ODE

(explicit) ODE of order 1:
intervals

Example:

What about?

System of (explicit) ODEs of order 1:

open set in

Solution of ODE: with

satisfies for all

Example:

is a solution

orbit of

is a solution orbit of



Ordinary Differential Equations - Part 3

ODE: (explicit, of first order)

Example: (a) autonomous

(b) not autonomous

(c)
autonomous

Definition: autonomous system: with often:
     open
     continuous

Directional field:

orbit

Examples: (a) sin( ) sin( )

(1) for all is a solution: sin(    ) 

(2) for all is a solution.

(3) A solution with is monotonically increasing

with

(b)



Ordinary Differential Equations - Part 4

Example: cos( ) (autonomous ODE of third order)

define:

cos( )

(autonomous system of ODEs of first order)

Example: cos( ) (non-autonomous ODE of third order)

define:

cos( )

Remember: (explit) autonomous ODE of   th order

components
(autonomous system of   ODEs of first order)

(explit) non-autonomous ODE of   th order

components

(autonomous system of    ODEs of first order)



Ordinary Differential Equations - Part 5

Initial value problem: with continuous

Find all solutions

with

Solving strategy: Assume

ODE:

Therefore: any solution with            satisfies:

for all 

for all 

fundamental
  theorem 
 of calculus

substitution:

for all 

for all 

where     is an antiderivative of

Examples: (a)
informally

log(   )

natural logarithm

Solution:

(b)

initial value:

solution:



Ordinary Differential Equations - Part 6

non-autonomous ODE: can we separate  and  ?

example:

only only

Separation of variables:
(initial value problem)

continuous functions

Assume:

Therefore: any solution with            satisfies:

for all fundamental
  theorem 
 of calculus

for all 

substitution:

for all 

for all 

where     is an antiderivative of

where     is an antiderivative of

for all for a constant

Example: (a)
informally

log(   )

natural logarithm

for a constant

(b) sin( )

sin( )
informally

sin( )

cos( ) for a constant

log( cos( ) for a constant

log( cos( )



Ordinary Differential Equations - Part 7

Linear ODE of first order:

continuous functions

Finding solutions: (with an integrating factor)

with

Note: if is an antiderivative of   ,

then:

multiplying both sides

product rule

antiderivative
   is antiderivative of

Solutions:

Example:

solution:

Initial value condition:



Ordinary Differential Equations - Part 8

Questions: Initial value problem: with continuous

Does a solution exist?

What is the domain of definition?

Uniqueness of solutions?

Examples: (a)
part 5

solution exists:

only defined for

(b) with

We find at least two solutions: for all

In general:

directional field

orbit

existence: does each point have an orbit?

uniqueness: can two orbits cross?

not unique



Ordinary Differential Equations - Part 9

continuous
continuously
differentiable

  locally
 Lipschitz
continuous

Definition:

(or open set   )

is called locally Lipschitz continuous if:

standard norm of

Lipschitz constant

Remember: (1) loc. Lipschitz continuous continuous

(2) loc. Lipschitz continuous

(3)
continuously differentiable.  Fix

 mean
 value
theorem

between    and

sup

loc. Lipschitz continuous



Ordinary Differential Equations - Part 10

Initial value problem: with loc. Lipschitz continuous

Theorem: The initial value problem has at most one solution. (orbits don't cross!)

Proof: Assume are two distinct solutions

max

max

choose   such that 

max for all

with for

inf

and



Ordinary Differential Equations - Part 11

initial value problem

with loc. Lipschitz continuous

integrating

function

Definition:

Now we know: is a solution of

(fixed point equation)

Let          be a complete metric space (set with distance function)

and be a contraction which means:

Banach fixed-point theorem:

Then: has a unique fixed point and

for each         we have:



Ordinary Differential Equations - Part 12

initial value problem with loc. Lipschitz continuous

there is a unique solution!

(Picard–Lindelöf theorem)

Let          be a complete metric space

and be a contraction

Banach fixed-point theorem:

Then: has a unique fixed point

We need: (1) Complete metric space consisting of functions.

(2) Contraction

Now we know: is a solution of

(fixed point equation)

For (1):
continuous
+ bounded

with metric: sup

standard norm

Fact: is a complete metric space.

For (2):
gives a map

sup

sup

sup

triangle inequality
for integrals

length interval

sup length sup

sup

sup

contraction

for    small enough

Picard–Lindelöf theorem

loc. Lipschitz continuous

Then there is         and a unique solution

for the initial value problem

in the domain of
with property 
(see below)

needed

Definition of    with property

being locally Lipschitz continuous at    means:

So we need for all

Hence: (not a problem for the solution since we choose    as small as we want)



Ordinary Differential Equations - Part 13

Picard–Lindelöf theorem

loc. Lipschitz continuous

Then there is         and a unique solution

for the initial value problem

Iteration from the Banach fixed-point theorem

Picard iteration:

Example: initial value problem:

start with

first step:

second step:

th step:

(pointwise limit)

exp( )

(also uniform limit)



Ordinary Differential Equations - Part 14

initial value problem with loc. Lipschitz continuous

open in 

(IVP )

(Picard–Lindelöf theorem)

      there is         and a unique solution

Extension of solution: We say a solution                 extends

if and

Maximal solutions: A solution                 is called maximal if there is no extension.

Proposition: loc. Lipschitz continuous(IVP ) for

has exactly one maximal solution (defined on an open interval).

Proof:
two solutions of (IVP )

two solutions of (IVP )

There is        such that

withopen interval

gives maximal open interval

Show: Assume:

Then: for all

because of continuity on

Look at (IVP ) uniqueness of solution implies:

for

Conclusion: and

Define: open interval there is a solution (IVP )for

open interval for maximal solution

cannot happen!

Definition: If the maximal solution is defined on          then it's called

a global solution.



Ordinary Differential Equations - Part 15

vector field

open in 

orbit

For loc. Lipschitz continuous

(IVP ) has a unique maximal solution

is a maximal solution (IVP )

Phase portrait:
orbit at

where

is the max. solution of(IVP )

Proposition: For loc. Lipschitz continuous, the phase portrait satisfies:

(a) For all there is an orbit

(b) Two orbits satisfy:



Ordinary Differential Equations - Part 16

open in 

Definition: A global solution               of            is called:

fixed point if for all

periodic if there is a         with

for all
a period

orbit

Proposition: For loc. Lipschitz continuous,

there are three options for the maximal solution    of             :

(a) is injective

(b)

(c)

is fixed point

is periodic

Example:
sin( )

sin( )

Do we have                 with constant for all   ?

contour lines of
Note: constant for all  

for all  

chain rule

grad for all  

cos(  ) satisfies grad

Fixed point: grad
sin( )

periodic solution

(pendulum does not move)

injective
solution



Ordinary Differential Equations - Part 17

In part 12: Picard–Lindelöf theorem for initial value problem

locally Lipschitz continuous

there is a unique solution

Now: initial value problem

continuous function

interval in open set in

generalized rectangle in

Picard–Lindelöf theorem (for non-autonomous systems)

Assume                    satisfies:

interval in open set in

standard norm in

compact

Then:       there is         and a unique solution

for the initial value problem

For

Proof: Same as in part 12 with

and Banach fixed-point theorem.

Picard–Lindelöf theorem (special version)

continuous!

Assume                    is continuous and satisfies: for each

Then there is a unique global solution

for the initial value problem

Proof: Set Complete metric space

with metric sup

standard norm

sup

sup

triangle inequality
for integrals

sup

sup

sup

sup

is a contraction

Banach fixed-point theorem:

unique solution

for all

global solution



Ordinary Differential Equations - Part 18

Definition: A system of ODEs

is called a system of linear differential equations if

continuous

or interval or open set

with
continuous

Note: If for all    , then the system is called homogeneous.

If for all   , then the system is called autonomous.

Lipschitz condition?

matrix norm/ operator norm

continuous

Picard–Lindelöf theorem 
(special version)

unique global solution
or interval

for initial value problem

Example:



Ordinary Differential Equations - Part 19

System of linear differential equations: (of first order)

with

interval
 in

continuous

solutions are global

autonomous systems:

example:

fixed point

corresponding homogeneous system

Fact: If are two solutions of

linear combinations of solutions
are solutions

Proposition: The solution set of the corresponding homogeneous system

continuously 
differentiable

for all

forms an -dimensional      vector space

Proof: is a subspace in the -vector space

What about the dimension of 

(IVP )

Picard–Lindelöf theorem 
(special version)

unique solution

extended phase portrait:

extended orbit at where

unique solution of
is

(IVP )

define a map:
linear map!

surjective  (every      has a solution)(IVP )

injective

uniqueness

on

isomorphism

dim(  ) dim(  )



Ordinary Differential Equations - Part 20

System of linear differential equations (homogeneous + autonomous)

(IVP )

Picard iteration (see part 13)

start with a guess

solution of (IVP )

Picard iteration: guess:

1  step:st

2  step:nd

n  step:th

solution of (IVP )

exp

matrix exponential

Example:

exp

cos( )

sin( )

cos( )

sin( )

solution of         with(IVP )

exp
cos( )

cos( )
sin( )

sin( )
cos( )
sin( )

all orbits are circles!



Ordinary Differential Equations - Part 21

System of linear differential equations:

with

interval
 in

continuous

We already know: the homogeneous part of

has an n-dimensional solution space

the initial value problem (IVP )

has a global solution

Solution set: continuously 
differentiable solution of

(affine subspace)

Show Take

Take          and set

is solution of (IVP )

Choose           as the solution

of the initial value problem

Then: with

is solution of (IVP )

uniqueness

Result: The solution set of                        is given by

where is the solution space of the homogeneous part

and is a particular solution of

is an n-dimensional affine subspace


