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Ordinary Differential Equations — Part 4
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Ordinary Differential Equations

Other examples: (a) X = -—L,J’L X  (harmonic oscillator)

(second order derivatives)

(b) 0<—>0, m-X=F e
X \ / 9 system of differential equations
® m-y= +
2= T

Topics: — system of ordinary differential equations (ODE)

— solution methods

— existence and unigueness of solutions

— linear ordinary differential equations (matrix exponential function)
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Ordinary Differential Equations — Part 2

Definitions: For T < ﬂ)\ (inferval, open sef, union infervals,..)

Ck(I> {X I — R ‘ X s k—’rimes continuously diﬁevemfiaﬁ\i}
D Ve
£ —=x(t) )

>< ; X / , X7 continuous functions
)

al_
dt

Ordinary differential equation: F ({, R, ).(, ey X(D> =0

L 7
>| 0DE continuous

0 0 [
Example: € + X +{X -\-(X) =0

(explicit) ODE of order X = w({;lx)’ W: Lx)—> fR . L,J < R

v intervals

Example: % = X+ ¢

f about? /X, = X+t .
what about? <>><<1L _ Z((Z:_ {;> ~> (;1) = \\/({71(,:(17,))

System of (explicit) 0DEs of order 1

=w(t,x) , xBel , w:IxU—R
'\opem sef in IR”

Solution of ODE: (: U;o, ) —> L with Uh,,ﬂ)g L

satisfies OLU;) = \/(t,otkt.)y for all te (%01{4‘)-

\ovbi’f of X

Example: % = x  , =L, = R, w(t,x) = ( ) F/\N
X=X, T~ () = (ﬂ"((%) is a solution (1 >
Cos |/
sin(t) \J

~ A : : . ~
o((Jc) — T(cu (t)> is a solufion ovbit of X
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Ordinary Differential Equations — Part 3

ODE: X = W({:,X) (explicit, of first order)

Example:  (a) 5(: Ar X ~>  aufonomous

(b) X = J(, ~> not autonomous

(c) /4
(?(1): (ﬁ‘{) ~>, autonomous

S =

h .
Definition: autonomous system: X = v(x) with V: (A — R otten:

A open
/& W< R’ Y continuous
Directional field: N -~ 1 2
7 N 7 \ '/"(f’) —_ V: R —R
._\ T 2 P /ovbi’f\
= 7 : >
N /

Examples:  (a) % = sin(x) , V:R—>R , v(x)=sin(x)

<

N
-~

%-'ﬁ' g R

¢ >

[ ] L
sl 0 >

‘__|=? [ ]

)3 s

(1) (X(JC> = (0 for all te R is a solution: o((t) = sin( (%))
~N—

L__./-Y—/
=0 =0

(2) r(E) =7 for all £te IR is a solution,

(3) A solution with o((o) = ,'% is monotonically increasing

with Kiw- or(t) = .

E-=>0o

(b) (,;Q _ (-O , VR R, () (_;3

\Z
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Example: )( = oos(i) + >.<1 + X (autonomous ODE of third order)

% o=

define: = X | ~~> ‘
4 4 e = )

>/3 — oos(%) + )/: + >/'1

:> >./ = \(()/) (autonomous system ot O0DEs of first order)

E E\ : osle s . ¢
Ak = X = cos(X) + xl F X-=-1t (non—autonomous ODE of third order)

Yo t
define: ))’/1 _ ))i N % - %
); X

>/3 - cos()(,) i y: + >/'1 —)/0(r

Remember: (explit) autonomous ODE of N th order <> >./=-' V()/)

K n components

(autonomous system of NODEs of first order)

(explit) non—autonomous ODE of n th order ~> >/ = V(Y)

R n+4 components

(autonomous system of w1 0DEs of first order)
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Initial value problem: x = v(x) with V: R—>R continuous

x(0) = X,

Find all solutions : (to,t1) — R

0
Wd'h OK(O) = X

Solving strategy:  Assume V(Xo) #0

X

ODE: V) =

=V (x(t))>

Therefore: any solution of: (te,t) —> R with k(0) = %, satisfies:

20
= 4 for all s¢ (‘Eo,tq)

fundamental O((S\)

theorem V(DL(SY)
of calculus /\/

=t for all te(t,,t,
S v(rx(s)) ’ e (tt)

N(U substitution:

& j V(X) for all te(t,t,)

[}

< > F(«)) - F(x) = £ forall te(t,t.)

—
—

o((s)

,dx = x(s)ds

where F is an antiderivative of 1

= F(«(D) = t-c forall te(k,t

= alb) = F(t-c)  forall te(t,t)

Examples:

(a) X=A%x , x(0)=x=0

<:> GA\_T: _ 7\_x mfovma\\% fdx ?\ n

& lealxh) = Mt +G, CeR

natural logarithm

At G
= lx(t)] = ¢ -e
aooat
-6 C
At

Solution: (t) = X,- €

(b) %X =x", X(0) = x%0

& Lo S PA :ﬁ“

— H = p C'EZ |
= «lt) s <
_ |
initial value: ok(0) = %u‘ = % = C=- jxj
_1 xo

solution: () =

)
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Ordinary Differential Equations — Part &

non—autonomous ODE: X = w(t, x)

@/ can we separatet and x?

example: . f,g' s

Separation of variables:

X = j(f) L(X) ;o X(t) = X, (initial value problem)

oovﬁmuous functions

Assume: h(Xo) + 0 :> WX): j(ﬁ)

Thevrefore: any solution o : (t,,t) —>R with (k) = x. satisfies:
2 €,

fundamental O((S) S) fo
= r all se(4,,t,
theorem h(o((s)\) j( ( A )

of calculus
<>5h((ﬂ jﬁ () ds o all te(k,t,)

substitution: X = et(s) , dx = x(s) ds

ol(t)

<> jl._(x dx ——jj (s) ds for all te(t,,t,)

S () - F) = G- 6D forah be(s,8)

where [ is an antiderivative of 1

h

<:> F(O((t)) — G(‘E‘) + C where 6 is an antiderivative O‘FJ

for a constant cER, for all te(’cq,tl)

= alt) = F—1<G(’c> £ c)

mwcovma\\q, AX
<é:%>> f%fi_ - %i{: X tSﬂ 1 t (*t

d
<::> \j‘oq(|x|) = %{:q + C for a constant celR
natural logarithm
1% %(0) = X, 14
S E’C + C RS _ H{:
&« = e = «t) = x-@

(b) X = SiV\(t)'@X ( X(O) = Ao

m{:ovma\\
<:> O(\i_;(: - sin({:)'cx % \SO\X — sm(t) dt

<:> —c_x = —cos(t) + C for a constant c€R
<:> *(t) = -log(cos(t) + E) for a constant CER
®(0) = X

:> -\Og(cos(0)+6> = X => c =e -1
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continuous functions

f
Linear ODE of first order: X = a(t)-x + L(’C)

Finding solutions: (with an integrating factor)

X+ %(t)x = b(t) with &(t) := - a(t)
mu\flp\%lmzi;es “ CA({:) . a(t)XCZA(t) _ L(’C)é[\(t) Note: if A is an in’rioleviva’five i{: >,
R CIRONE
product rule ~ 0) ,A\,({:) then: RC = A_\(P_I-C
= L) = “a()

S ~ LA is anfiderivative of L(t)g(e)
antiderivative A(t)
&= We = HB v, ceR

Solufions: - «{t) = ﬂt)(HHMC) , ceR
campler % = Ex el XE)=X
(= Xx-tx = e,L‘ch |-e_i‘£1
& ket tyet o
S %(X(w-él‘g) = {
= (&3 = tec , ceR
> solution:  ok(t) = (JCJ,C).(;T*Z
Initial value condition: k(0) = X, ~> &(t) = ({:+X°>-e1_‘

/
C

f‘L
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Ordinary Differential Equations — Part ¢

n h .
Questions:  Initial value problem: X = V(x) with V: R—>R"continuous
X(O) = Xo

e Does a solution exist?
e What is the domain of definition?

e Unigueness of solufions?

part s

Examples: (a) x = xt | x(0) = 1 :> solution exists: ot((:\> = —
only defined for t<1
x(0) =1
. . = >
0 i

a—
7

(k)  x=V(x), x() =0 with v(x) =4 X |,
| ; X< 0

We find at least two solutions: oL((:} = 0 for all t

0, t<d

In general: A /
orbit
-7 /
directional field N 7\ \ }/—>

existence: does each point have an orbit?

unigueness: can two orbits cross?
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Ordinary Differential Equations — Part 4
5: R—> R

J 5

continuously N \.Ooa\\q
differentiable —> Lipschitz :>
continuous

n :Z n
Definition: V: R —> is called locally Lipschitz continuous if:

vy 4 3 Y
xeRT €30 L0 yize B (x)

/Lips chitz constant
[ v(y) || < L|y-2

sTaV\olavol norm ot rR j

Remember: () /g, Lipschitz continuous => V continuous

WSy 2 M-Vl = 0)
[v(y) - v(2)l

V loc. Lipschitz continuous => < L

|y -2

(2)

(3) 5_’; R—= R continuously differentiable. Fix xc R, £>0

|5‘(Y) - 5(2)| _ ‘ 5_\(:5) \ g between )/anol z

|y - 2| )
mean
value

theorem < sup \S\(g)\ =: | =
geBE(x)

_—_:> 5 loc. Lipschitz continuous
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Ordinary Differential Equations — Part 10

Initial value problem: X =V(x) with V: [Rn% [Rh loc, Lipschitz continuous

x(0) = X,

Theorem:  The initial value problem has at most one solution. (orbits don't crosst)

Proof: Assume o, o, are two distinct solutions (0(1(0> = « (0 = )

with (8) £ (Ef) tfor €>0 and % A
inf it ¢ [0,€) | o« (T) # at(tg =0 X o(

B =l - <O L
= | {&1@) It - fal(t) I

= | f(v@ (©) - vfale) de | < f v 2)) - V(o) o
0/
e 2 maxlfo] < L %(0) - (@)
< L [polde < Loe maxBE)

< L e
0 “~N—
choose € such that | € < 1{

= H;Qc)” <t max||§(t)|| forall te(0€] | = o, =« §

= H fv(og(t)) 4t - StV(o(l(t))o\t
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= v(x) |7 initial value problem
X = X
x(0) = X, ~ with V: [Rn% Rh loc., Lipschitz continuous

@’riwq t t
> k) ds = SvxE)ds

\'J/WF“J 0
x(¢) - x(0) t

:> X(k) = X, *t S\/(X(S)) O(S
;/a—\f\/
@(X) function

N
Definition: é) : }(R, ar) — :F(R; [Rn)
f s (tl% X, + Sv()f(s))o(s>

% = V(%)

n
Now we know: X ﬁ{ —> ﬂ{ is a solufion of
X(0) = X,

<:> éi(x) = X (fixed point equation)

Banach fixed—point theorem: Let (X, A) be a complete metric space (set with distance function)

and ii : >< —> >< be a confraction , which means:

Jaelof) VYxxeX: d(@(x),T®) < q- d(x,%)
] (1\

< 1

Then: (D has a unique fixed point s X and

h->co

for each Xaéx we have: @h(xo) —> X* i
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Ordinary Differential Equations — Part 12

initial value problem : X = V(x) with  V: Rn% R" loc. Lipschifz continuous

X(0) = X, :> there is a unigue solution:

(Picard-Lindeléf theorem)

Banach fixed—point theorem: Let (X, A\) be a complete metric space

and _Ej : >< —> >< be a contraction .

Then: O  has a unigue fixed point X*é X .

ol

We need: (1) Complete metric space consisting of functions.

(2) Contraction @(DQ(IC) = X, t+ SV(DL(S))o(S

X = V(x)
x(0) = X,

n
Now we know: ol: R— R is a solution of

<:> @(o() = (fixed point equation)

F : ™ N in the domain o
or (1) >< — g'o(: (—E,E) —_— U\C_Z_R Wﬁ; ijem (;)v ok oom’rinuous’ o((O) = Xo}
(see below) + bounded
with metric: A(o(, ﬁ) +— Sup H ‘*Qt) - P
e(-e,e
N )\ standard norm
C —>
-¢ €
Fact: (X, A) is a complete metric space.
t
For (2):

@(DJ(Q = X, t SV(&(S)) ds gives a map (5 : >< > ><

A3, a(p) = sup _ || (=) - &

te(-e,e)

— sup H Sv(oa(s)) v( (5)) a(sH

’ce( ¢,e)
Triangle inequality
for integrals ~N N
< sup juv(&(s)) v(} N
oG (‘9 ¢) 0 "

length interval

< sup W ' SbéP]HV(DL(S)) - V(M)) R

te(-e.e) Jebtl _—~—"o
[kl <€ <
> S
< e sup v (a()- V(g
— Yy —— (k) needed

< L |«fs) =B

E’YL\_/' 0‘(0(, P) contraction

<1 for € small enough

Picard-Lindeléf theorem

V: W—>R" loc. Lipschitz continuous XOQM.

Then there is ¢ >0 and a unigue solution oL : (— E,E) —> U

for the initial value problem X = V(x)
X(O) = Xa

v

Definition of A with property )

V' being locally Lipschitz continuous at X, means:

14 3 Y vy - vEl £ Ly -e

$0 L0 yize Bc(x) /R 7“
o) B0
So we need oL(S)I ‘3(&) e:BS(X,,) tor all se (- £,€>.

Hence: |\ 1= :Bs(xo) (not a problem for the solution since we choose € as small as we want)
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Picard-Lindeléf theorem

Vi U%Rh loc. Lipschitz continuous XOGM.

Then there is ¢ >0 and a unigue solution oL : (—- £,€> — U

for the initial value problem X = V(x)

x(0) = X,

Picard iteration:

hrs A~ h->co
Iteration from the Banach fixed—point theorem @ (“) > &

4
() = x + Sv(EE)4

Example: initial value problem: X = X
x(0) = 1

start with  o(: (-£,€) — R, &(t) =1

t

first step: @(QQ(JC) — 1 + S&,( )ds = 1+t

0

t
second step: @1(6‘0(%) = 1 + 5(1 i >O\ =1+ t+ ¢t

0

nth step: @h(&)(e) — |+t 471& " }_

lh—>oo (pointwise limit) (also uniform limit)

k

i t—l = exp(t)

k=0
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Ordinary Differential Equations — Part 14

initial value problem: X = V(%) with  V: D —>R" loc. Lipschitz continuous

\ open in "
2 open in
(vele) | x(t) = x,

(Picard-Lindeléf theorem)

_> there is ¢ >0 and a unigue solution

oL (t-e, tre) — D

Exfension of solution: We say a solution of: T —> D extends ol:(t,-¢, f°+€>% D

it T2 (t-c, tre) and | ): o
(t.- €, t+e

Maximal solutions: A solution o«: T —> D is called maximal if there is no extension.

Proposition: (IVPQ:) for \/;D %ﬂ{h loc. Lipschitz continuous

has exactly one maximal solution (defined on an open interval),

Proof: ) o L,—>D ¢
° fwo solutions of (IVPY?)
% L,— D

:> I:= 11(\ Iz:(a/l,>

= o<1|I, 0<l|l_ fwo solutions of (IVPfZ‘;)

There is ¢ > () such that o(,ll

i\) open interval

t_, +) — UJ gives maximal open interval
JeM

= X
ll(e.- £, t+€)

12 \J = (f°—£,€°+€> with r>(1|‘J — 0("|.)§ — J\’L

(t-g, t,+€)

Show: f:+ =b Assume: {;+ # b

Then: 0(1({:) = D(,_(t) for all £¢€ ({:_,‘l:+)

e |

= o (t,) = “l(t+) because of continuity on L

Look at (IVP?) . unigueness of solution implies:

oG (£) = o, (t) For te(b-E,¢+7)

= (b, 5+T)e M §

Conclusion: ({:_, D = and

0(1|I = 0(7'|'I_' :> X ¢ —.[1U IZH:D

there is a solution of: T —> D for (IVP{;(:)} =

Define: iI open interval

U 1 open interval for maximal solution n
IeS

/7_}°/< cannot happen:

Definition:  If the maximal solution is defined on T = R, then it's called

a global solution,
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X

/N -
— v(x) vector field ,, —~ 7\ |\ ﬁb” N
~—— v:D —R —— i v(p) \
K open in [Rh N \ / - / / N
Ny /' v =
—_

h 3 3 5
For Vv:D) —>R loc. Lipschitz continuous :

(IVPE)

Phase portrait:

y = V(X
X () has a unigue maximal solution «: | —> D

Proposition:

X(ts) = X, @ B(E) 1= x(E+t,)

P: lz —> D is a maximal solution (IVPQO)

/\/\ orbit at X,
\p/@ [x(a) | te T where x: T—D

o N S s the max. solution of (IVPy,)

@
\— ¥

For V::D %Rh loc, Lipschitz continuous, the phase portrait satisfies:

(a) For all xeD there is an orbit 23 X.

(b) Two orbits 01 ; [71 satisfy: 01”02, #¢ =5 (91 :Oz.

}
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x=v(x), vD—>R (=
N (©) T—=

\//_\\>
—©

Definition: A global solution ot: R —> ) of X = v(x) is called:

o fixed point if x(t) = «(0) for all teR.

+ periodic if theve is a | >0 with X(t+T) = o(t)
/ for all teR.

a period
orbit
Proposition: Foy V::D %[Rh loc, Lipschitz continuous,
. | | % = V(x)
there are three options for the maximal solution oL of
X(O) = X,

(a) o is injective /\/\/

(b) o is fixed point
(c) K is periodic

E le: . :
R O Y ): V(% %)

Do we have §: Rl—> R with }(o((’c)) = constant for all t ?

Note: }(u({:)) = constant for allt

. & A f(®) 20 for allt

contour lines of ‘5:
. dt

ool
\/\/\ -4
| i & chain rule
..Q..._; & {ard§(«(0) , (&> =0 for allt
injective v(o(('k))

solution L :
periodic solution
{1 1 :
5()(1/"1.) = X, = cos(¥%) satisfies <qvad§(x1,xL),V(x1,x,)> =0.

. . ' !
Fixed point: qvaol}()(“xt) = (sm(X1)> _ (3) => X,=0 , x1:|(.r,,~

xl
ke Z
é T (pendulum does not move)
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In part 12:  ?Picard-Lindelé6f theorem for initial value problem

X = V(x) % locally Lipschitz continuous
S—
X(0) = X, = there is a unique solution

N ow: . initial value problem
X = W(t, x) 4
h
X(to) = Xa | >— continuous function WwW: Lx U —> R
7
X interval in R open set in [
N 1
n+
(A T generalized rectangle in(R
€ ) >
T t

Picard-Lindeldf theorem (for hon-autonhomous systems)

Assume W: Lx U —> R

7 7r ’Q
ﬁterval in R open setin {"

continuous!

satisfies: V?( < [ x W compact HLK>0 V(t,x),({/y)ék :

Hw(t,x) —W(t,y)H < Ly flx-

1 /

standard norm in R

Then: For X,E W, thereis ¢ >0 and a uhique solution o{ :(t,—s, t°+€)% U

for the initial value problem i =
X(to) - XO
t
Proof: Same as in part 12 with
O(w)(t) = x, + Sw<s, () ds

E
and Banach fixed-point theorem.

Picard-Lindelof theorem (special version)

n h
Assume W: R x R —> R is continuous and satisfies: for each T>(0 :

>0 VEET,T] YuyeR ¢ [Juit -u(e)]| < Lo lIx-yl

Then there is a uhique 3|obal solution ol: R —> R

for the initial value problem K= e, . T
X(to) = Xa T

Proof: Set t,=0. Complete metric space X = C(:—T,T—_\, Rh>

with metric A(o(, @ .= Sup S | «(t) - L&) o
t \

telT,T)
standard norm
@(‘*)(%) = X, t+ Sw(s, o(5)) ds

0

A@BE,8(E) = sup e B - B(F))

te[-T,T] R

_aL| :
s < HH § (s, (o) = W ) ds

Rh
friangle inequality
for integrals ~N i t
% sup QZLTI’CI S ” w(s, w(s)) = w(s, BE)) || , ds
tefT, ) 0 &#/V\_IR,/
< Lo ||«(s) = Bls) .
t
~2L. ]t -
2 su 6’.2 At SLT-QZLTISIQZLTISIHM(S) ~ E(S)“ ho(S
tel-T,T) 0 [PD

L__,_,-Y
~2L,ltl ‘ < A(&’ @
< sup e L d( f) St

0

T L
L, L (L
<pdle ) gp i) ol
Y
<1

Banach fixed-point theorem:

E : >< —> >< is a contraction —> unique solufion ol : [—T,T] —> rRh

|

for all T>0

:> global solution oA: R —> rR”
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Ordinary Differential Equations - Part 18

Definition: A system of ODEs X = w(t,x)

is called a system of linear differential equations if

Wi RxR— R, (t,x) — AE)x + b(¢)

or open set hxhn

cohtinuous with A'- t > A(t) € |R ~__
L: t > b(t)eR"

or interval

continuous

Note: « If L(é) = (0 for all t, then the system is called homogeneous.

« 1 Alt) = A, b(t) = | for all £, then the system is called autonomous.

Lipschitz condition?

[wieod -wemn| = | A x + 1) - (A®)y + 4OV
= A -] < 4B Ix-y1

matrix norm/ operator norm

[’T/ T] 3t HA(QH cohtinuous

< Ly ”X‘)’"

Picard-Lindeld6f theorem
(sPecial version)

X = W(t, x)

h
—> uhique global solution « : R —> [R for initial value problem (©
X(t)) = Xo

N

or interval

Example:

) - ln)
~> 1 _ 1 —
X, 2t-X,

0 =i -t d -t _
~> W —X1€. = ( ~ ﬂ(&ﬁ = 0

g ¢ J Y

cht—XL-?_tC =1 W(XLC ) = 1
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Ordinary Differential Equations - Part 19

System of linear differential equations: (of first order)

x = At) x + b(£)  with It —— Alt)e [Rhm
contfinuous
irﬁeﬂ;val -/I 5t ——s ly(f)e Rh
* solufions are global oL : I — [Rh
» autonomous systems: A(k) = A ) L(f) =L 1
ample: A_ (—1 O)J (1
V(x) = Ax + b

» corresponding homogeneous system

x = Alt) x
Fact: 1If ol: 1T — [Rh ) ﬁ: I —> [Rh are fwo solutions of X = A(Q X

(x+ PI(E) = x(£)+ B(e) = AR (k) + A®IB(E)

= Ak) (x(t) + B(E))
linear combinations of solutions

( 94).({:) — A(t)( o((t)) 7 are solutions

)

Proposition:  The solution set of the corresponding homogeneous system

n : e
§ = {u: I — R g, | x(t) = A®) «(t) ‘i’éf"}

forms an N-dimensional R»vec’ror sPace .

Proof: S

is a subspace in the R-VEG*OY SPace C1(I , [Rh>

What about the dimension of ,.S: ?’

Picard-Lindeld6f theorem
(sPecial version)

. A
(IV?&‘;) g OF 7~ ~——> unique solution «: T —> [Rh

X(ts) = Xa
%(t) = X,
. /
exfended phase portfrait: "
/// // S
— a
——"""/

teT where X is ’g

unique solution of (IVP te)

extended orbit at (t,,x,) : i(;(l:))

h
define a ma?p: /5 S; —> R

X +—> «(t,)

<

linear ma#p!

L/> surjective (every averi) has a solution)

LS injestive (L6 = 4() = (e = ﬁ(m>

uhiquehess

:> X = @ on T_
:> /: S) —> Rh isomorPhism

—> dim(S,) = dim(R") = n 0
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Ordinary Differential Equations - Part 20

System of linear differential equations (homogeneous + autonomous)

) hxh
e X(O) = X, ) Xoéth

L% Picard iteration (see part 13)

start with a guess 8(/= R —> R

h-=>co

b(&)(t) = x, + gA &s) ds | ~——> @h (&) —> 7‘o(

solution of (IV?QO)

Picard iteration: guess: 8/(: RH R ) &(f> = X,

wster BE)(E) = kv [Axde = (L EA)x
roster B(@)E) = x ¢ JA(L + EA)R) ds

= X, +tAx, + LEAY, = (L tALER)x

it step: D (%)(k) = (1L+£A+*?JJA1 +'?f3A3+--' +4 e"/\h>xo

h—= oo

> solution of (IV?QO) O(Qt) = Z - 0
~ tA

N: eX?(t-A) = &

k
= (t-A)
S
k=0

matrix exponential

= (0-000 A

1-L¢ %t" r .. - sin(t)
—_

[
/
Q)
o
wn
=

S A I
O+t é*\;_s!* -, cos(t)
Isin(t)

solution of (IVPY) with x, = (C> :
0

B | - cos(t) —sin(t)>(c> _ cos(t)
K(t) = exp(tA) X, = (sin(t) cos(t) / \ 0/ = C'(sin(t)>

:> all orbits are circles!
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Ordinary Differential Equations - Part 21

System of linear differential equations: X = A({?) X + L(’C> (X)

with ITs>t——> Alt)e [Khxh

/ continuous
interval I 3 't

in R — L({-‘)e [Rh

We already khow: * the homogeneous part of (x) (X = A(JC) X>

has an nh-dimensional solution space S;

+ the initial value problem (IVT’&Z) x = AE)x + b(¢)

has a global solution X(t) = %o

Xﬁﬂ/xo . T— R x/\ %a,xn

Xo

“

*'0
h :
Solution set: S r = iﬁ I — [R Z;T;?::ﬁ:&e ‘ [ﬁ solution of ()K)E

S; + bftx P = { X + th ‘ X € S;} (affine subspace)

Show S: S; + X‘” . (-_—_3) Take o(G,S; : A(Q(“(’C)*‘ﬁxn(t))ﬂL L(f)
= M)« + AlE) () + b(¢)
— N

= ol + 0

= ( Yo ) @
:> X + X’“‘“X" € 5

(&)  Take PeS and set %= Blk) B

X,
=> B s solution of (IVPL)

>

Xo
Choose o€ ,_S: as the solution >

of the initial value problem | X _—_A({:)x

X(to) = %‘xo

Then: o(+b/thb ES with (0(+b/ta,x,,)({—‘°) = °<U3o) v b/\eo,x,,({o)

= ')\(:,~X° + Xo = X,
-_:> °(+Xtm<n is solufion of (IV?;{)
uhiqueness
_> F: O(+b/t,,,x,, D
Result: The solution set of X = A({?) X + L(jc> is given by

S:,S‘:+b’

where ,S‘: is the solution space of the homogeheous Part X = A(h) X

and X is a Partficular solution of X = A({:) X + L(f).

(5 is an n-dimensional affine subspaca)



