BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Ordinary Differential Equations - Part 5

Initial value problem:
$$\dot{x} = v(x)$$
 with $v: \mathbb{R} \rightarrow \mathbb{R}$ continuous
 $x(o) = x_{o}$
Find all solutions $\alpha: (t_{o}, t_{i}) \rightarrow \mathbb{R}$ $(\dot{\alpha}(t) = v(\alpha(t)))$
with $\alpha(0) = x_{o}$
Solving strategy: Assume $v(X_{o}) \neq 0$:
 $oDE: \frac{\dot{x}}{V(x)} = 1$
Therefore: any solution $\alpha: (t_{o}, t_{i}) \rightarrow \mathbb{R}$ with $\alpha(0) = x_{o}$ satisfies:
 $\frac{\dot{\alpha}(s)}{v(\alpha(s))} = 1$ for all $s \in (t_{o}, t_{i})$
 f undamental
theorem
of calculus
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} ds = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} ds = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$
 $\downarrow = \frac{\dot{\alpha}(s)}{v(\alpha(s))} dx = t$ for all $t \in (t_{o}, t_{i})$

$$\iff \alpha(t) = F^{-1}(t-c)$$
 for all $t \in (t_0, t_1)$

Examples: (a) $\dot{X} = \lambda \cdot X$, $X(0) = X_0 \neq 0$ $\Leftrightarrow \frac{dx}{dt} = \lambda \cdot x$ informally $\int \frac{dx}{dt} = \int \lambda dt$ $\langle \Rightarrow \log(|x|) = \lambda \cdot t + C$, CER natural logarithm $\langle \Rightarrow |\alpha(t)| = e^{\lambda t} \cdot e^{\lambda t}$ $\iff \qquad \propto(t) = \begin{cases} -e^{\mathsf{C}} e^{\lambda t} \\ e^{\mathsf{C}} e^{\lambda t} \end{cases}$ solution: $\alpha(t) = X_0 \cdot e^{\lambda t}$ (b) $\dot{x} = x^2$, $x(0) = x_0 \neq 0$ $\iff \frac{dx}{dt} = x^2 \iff \int \frac{dx}{x^2} = \int dt$ $\Leftrightarrow -\frac{1}{v} = t + C$, $C \in \mathbb{R}$ $\iff -\frac{1}{\alpha(t)} = t + C$, $C \in \mathbb{R}$ $\langle \Rightarrow \alpha(t) = \frac{-1}{t+\zeta} \langle C \in \mathbb{R} \rangle$ initial value: $\alpha(0) = \frac{-1}{C} \stackrel{!}{=} x_0 \implies C = -\frac{1}{x_0}$ solution: $\alpha(t) = \frac{-1}{t + (-\frac{1}{t})} = \frac{X_0}{1 - X_0 t}$