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Ordinary Differential Equations — Part 12

initial value problem : X = V(x) with  V: Rn% R" loc. Lipschifz continuous

X(0) = X, :> there is a unigue solution:

(Picard-Lindeléf theorem)

Banach fixed—point theorem: Let (X, A\) be a complete metric space

and _Ej : >< —> >< be a contraction .

Then: O  has a unigue fixed point X*é X .
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We need: (1) Complete metric space consisting of functions.

(2) Contraction @(DQ(IC) = X, t+ SV(DL(S))o(S

X = V(x)
x(0) = X,
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Fact: (X, A) is a complete metric space.
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For (2):

@(DJ(Q = X, t SV(&(S)) ds gives a map (5 : >< > ><
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Picard-Lindeléf theorem

V: W—>R" loc. Lipschitz continuous XOQM.

Then there is ¢ >0 and a unigue solution oL : (— E,E) —> U

for the initial value problem X = V(x)
X(O) = Xa
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Definition of A with property )

V' being locally Lipschitz continuous at X, means:
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So we need oL(S)I ‘3(&) e:BS(X,,) tor all se (- £,€>.

Hence: |\ 1= :Bs(xo) (not a problem for the solution since we choose € as small as we want)



