ON STEADY

The Bright Side of Mathematics

Ordinary Differential Equations - Part 13

Picard–Lindelöf theorem

 $\mathsf{p}_i: \mathsf{U} \longrightarrow \mathsf{R}^\mathsf{h}$ loc. Lipschitz continuous, $\mathsf{x}_o \in \mathsf{U}$. Then there is $\epsilon > 0$ and a unique solution $\alpha : (-\epsilon, \epsilon) \longrightarrow U$ for the initial value problem $\begin{vmatrix} \dot{x} = V(x) \\ x(0) = x_0 \end{vmatrix}$.

Picard iteration:

Iteration from the Banach fixed-point theorem
 $\Phi^h(\tilde{\alpha}) \xrightarrow{\mu \to \infty} \alpha$
 $\Phi(\tilde{\alpha})(t) = x_a + \int_0^t v(\tilde{\alpha}(s)) ds$

Example: initial value problem:
$$
\dot{x} = x
$$

 $x(0) = 1$

start with
$$
\widetilde{\alpha}: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}
$$
, $\widetilde{\alpha}(t) = 1$

first step:
$$
\Phi(\alpha)(t) = 1 + \int_{0}^{t} \widetilde{\alpha}(s) ds = 1 + t
$$

second step: $\Phi^2(\alpha)(t) = 1 + \int_{0}^{t} (1+s) ds = 1 + t + \frac{1}{2}t^2$

With step:
$$
\Phi^{n}(\alpha)(t) = 1 + t + \frac{1}{2}t^{2} + \frac{1}{6}t^{3} + \cdots + \frac{1}{n!}t^{n}
$$

\nand
$$
\Phi^{n}(\alpha)(t) = 1 + t + \frac{1}{2}t^{2} + \frac{1}{6}t^{3} + \cdots + \frac{1}{n!}t^{n}
$$

\nand
$$
\Phi^{n}(\alpha)(t) = 1 + t + \frac{1}{2}t^{2} + \frac{1}{6}t^{3} + \cdots + \frac{1}{n!}t^{n}
$$

$$
\sum_{k=0}^{\infty} \frac{t^k}{k!} = \exp(t)
$$