

Ordinary Differential Equations - Part 17

In part 12: Picard-Lindelöf theorem for initial value problem

$$\dot{X} = V(X)$$
 locally Lipschitz continuous
 $X(0) = X_0$ \implies there is a unique solution

Picard-Lindelöf theorem (for non-autonomous systems)

Assume $w: \mathbb{I} \times \mathbb{U} \longrightarrow \mathbb{R}^{n}$ satisfies: $\forall \chi \subseteq \mathbb{I} \times \mathbb{U} \text{ compact } \exists L_{\chi} > 0 \ \forall (t, x), (t, y) \in \chi :$ interval in \mathbb{R} open set in \mathbb{R}^{n} continuous! $\|w(t, x) - w(t, y)\| \leq L_{\chi} \cdot \|x - y\|$ standard norm in \mathbb{R}^{n} Then: For $\chi_{0} \in \mathbb{U}$, there is $\leq > 0$ and a unique solution $\alpha : (t_{0} - \epsilon, t_{0} + \epsilon) \longrightarrow \mathbb{U}$

$$\dot{X} = W(t, x)$$
$$X(t_0) = X_0$$

Proof: Same as in part 12 with
$$\Phi(\alpha)(t) = \chi_{a} + \int_{t_{0}}^{t} w(s, \alpha(s)) ds$$

and Banach fixed-point theorem.

Picard-Lindelöf theorem (special version)

Assume $W: \mathbb{R} \times \mathbb{R}^n \longrightarrow \mathbb{R}^n$ is continuous and satisfies: for each T > 0:

$$\exists L_{\tau} > 0 \quad \forall t \in [-\tau, \tau] \quad \forall x, y \in \mathbb{R}^{n} : \|w(t, x) - w(t, y)\| \leq L_{\tau} \cdot \|x - y\|$$

Then there is a unique global solution $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^n$ $\dot{X} = W(t, x)$ $X(t_0) = X_0$

for the initial value problem

Proof: Set
$$t_{a} = 0$$
. Complete metric space $X = C([-T, T], \mathbb{R}^{n})$
with metric $d(\alpha, \beta) := \sup_{t \in [-T, T]} e^{2L_{T}|t|} || \alpha(t) - \beta(t) ||_{\mathbb{R}^{n}}$
 $\Phi(\alpha)(t) = x_{a} + \int_{0}^{t} w(s, \alpha(s)) ds$
 $d(\Phi(\alpha), \Phi(\beta)) = \sup_{t \in [-T, T]} e^{2L_{T}|t|} || \Phi(\alpha)(t) - \Phi(\beta)(t) ||_{\mathbb{R}^{n}}$
 $= \sup_{t \in [-T, T]} e^{2L_{T}|t|} || \int_{0}^{t} (w(s, \alpha(s)) - w(s, \beta(s))) ds ||_{\mathbb{R}^{n}}$
triangle inequality
for integrals $= \sup_{t \in [-T, T]} e^{-2L_{T}|t|} || \int_{0}^{t} (w(s, \alpha(s)) - w(s, \beta(s))) ds ||_{\mathbb{R}^{n}}$

50 γ *te*[-τ,τ] $\begin{bmatrix} 0 \\ 0 \end{bmatrix} \begin{bmatrix} w(s), w(s) \end{bmatrix} = \begin{bmatrix} w(s), p(s) \end{bmatrix} \begin{bmatrix} 0 \\ R^{n} \end{bmatrix}$ $\leq L_{\mathsf{T}} \| \boldsymbol{\prec}(\boldsymbol{s}) - \boldsymbol{\beta}(\boldsymbol{s}) \|_{\mathsf{R}^{\mathsf{n}}}$

- T

$$\leq \sup_{t \in [-T, T]} e^{2L_{T}|t|} \int_{0}^{t} L_{T} e^{2L_{T}|s|} e^{2L_{T}|s|} \| \alpha(s) - \beta(s) \|_{\mathbb{R}^{n}} ds$$

$$\leq \sup_{t \in [-T, T]} e^{2L_{T}|t|} L_{T} d(\alpha, \beta) \int_{0}^{t} e^{2L_{T}|s|} ds \int_{0}^{t} e^{2L_{T}|s|} ds$$

$$\leq \frac{1}{2} d(\alpha, \beta) \sup_{t \in [-T, T]} (1 - e^{2L_{T}|t|}) \int_{0}^{t} e^{2L_{T}|s|} ds \int_{0}^{t} e^{2L_{T}|s|} ds$$

$$\leq \frac{1}{2} d(\alpha, \beta) \sup_{t \in [-T, T]} (1 - e^{2L_{T}|s|}) \int_{0}^{t} e^{2L_{T}|s|} ds \int_{0}^{t} e^{2L_{T}|s|} ds$$

$$\leq \frac{1}{2} d(\alpha, \beta) \sup_{t \in [-T, T]} (1 - e^{2L_{T}|s|}) \int_{0}^{t} e^{2L_{T}|s|} ds \int_{0}^{t} e^{2L_{T}|s|} ds$$

$$\leq \frac{1}{2} d(\alpha, \beta) \sup_{t \in [-T, T]} \int_{0}^{t} e^{2L_{T}|s|} ds \int_{0}^{t} e^{2L_{T}|s|} ds \int_{0}^{t} e^{2L_{T}|s|} ds$$

$$\leq \frac{1}{2} d(\alpha, \beta) \sup_{t \in [-T, T]} \int_{0}^{t} e^{2L_{T}|s|} ds \int_{$$