The Bright Side of Mathematics

The following pages cover the whole Probability Theory course of the Bright Side of Mathematics. Please note that the creator lives from generous supporters and would be very happy about a donation. See more here: [https://tbsom.de/support](https://thebrightsideofmathematics.com/support)

Have fun learning mathematics!

1

$$
A = \{2, 4, 6\}
$$
, $P(A) = \frac{1}{2}$

number of throws with an even outcome number of total throws

Definition: Let be a algebra A map is called a probability measure if: (a) (b) if we have pairwise disjoint sets for Example: 1 throw: number of elements in a set For example:

Exercise: **Prove:** $\mathbb{P}(\mathbb{A}^c) = 1 - \mathbb{P}(\mathbb{A})$

is completely determined by $\mathbb{P}(\{\omega\})$ for all $\omega \in \Omega$ **probability mass function:** $(p_\omega)_{\omega \in \Omega}$ with $\sum_{\omega \in \Omega} p_\omega = 1$

$$
\text{Define: } \mathbb{P}(A):=\sum_{\omega\in A} \mathsf{p}_{\omega}
$$

Example: $\Omega = \{1, 2, 3, 4, 5, 6\}$ unfair die **E** $p_1 = \frac{1}{10}$ $p_2 = \frac{1}{10}$ $p_3 = \frac{1}{10}$ $p_4 = \frac{1}{10}$ $p_5 = \frac{1}{10}$ $p_6 = \frac{1}{2}$ $\mathbb{P}(\{1,2,3,4,5\}) = \sum_{\omega=1}^{5} p_{\omega} = S \cdot \frac{1}{10} = \frac{1}{2}$

can be described by

 $P([a, b]) = \frac{1}{2}(b - a)$

probability density function:
$$
f: \Omega \rightarrow \mathbb{R}
$$
 with $\int f(x) \ge 0$
\nmeasurable:

Define:
$$
\mathbb{P}(A) := \int_{A} f(x) dx
$$

Example:
$$
\Omega = [0,2]
$$

\n $\int : \Omega \rightarrow \mathbb{R}$ with $\int (x) = \frac{1}{2}$
\nHence: $\int_{0}^{1} f(x)dx = \frac{1}{2} \cdot 2 = 1$
\n $\mathbb{P}(A) = \int_{A}^{1} f(x)dx = \frac{1}{2} \int_{A}^{1} dx = \frac{1}{2}$
\nLet $\mathbb{P}(A) = \int_{A}^{1} f(x)dx = \frac{1}{2} \int_{A}^{1} dx = \frac{1}{2}$

The Bright Side of Mathematics

Probability Theory - Part 5

Probability space $(\Omega, \mathcal{A}, \mathbb{P})$ **sample space** $\mathbb{F}-$ algebra **probability measure**
 $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ $\mathbb{P}: \mathcal{A} \longrightarrow [0,1]$

$$
\iff (\Omega_{n}, \mathcal{A}_{n}, \mathbb{P}_{n}) , \quad n \in \{1, 2, ...\}
$$

Example: first throw a die then throw a point into the interval -1 1 possible outcome: $\left(3, \frac{1}{4}\right)$ probability? First probability space: $\left(\bigcap_{\substack{1\\1\leq i\leq n}}\mathbb{A}_{i}, \mathbb{P}_{i}\right)$

$$
U_1,...,6S \qquad P(\Omega) \qquad \mathbb{F}_1(A) = \sum_{k \in A} \overline{6}
$$

Second probability space: $\left(\bigcap_{n\geq 1} A_{2}, \bigcup_{n\geq 1} P_{2}\right)$
 $\left[\frac{1}{2}, \frac{1}{2}\right]$ $\mathbb{B}(A) = \int_{A} \frac{1}{2} dx$

new probability space

$$
(\Omega_{1} \times \Omega_{2}, \sigma(\mathcal{A}_{1} \times \mathcal{A}_{2}), P)
$$

product -algebra product

P satisfies for A_cA_t, A_cA_t,
\n
$$
\mathbb{P}\left(\{2,3\} \times [-1,0]\right) = \mathbb{P}\left(\{2,3\} \right) \cdot \mathbb{P}\left(\left[-1,0\right]\right) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}
$$
\n
$$
\mathbb{P}\left(A_{t} \times A_{t}\right) = \mathbb{P}\left(\{A_{t}\} \cdot \mathbb{P}\left(A_{t}\right)\right)
$$
\n
$$
\mathbb{P}\left(\{2,3\} \times [-1,0]\right) = \mathbb{P}\left(\{2,3\} \right) \cdot \mathbb{P}\left(\left[-1,0\right]\right) = \frac{1}{3} \cdot \frac{1}{2} = \frac{1}{6}
$$
\n
$$
\mathbb{P}\left(\text{probability spaces: } \left(\Omega_{n}, A_{n}, \mathbb{P}_{n}\right) \text{ defined by:}
$$
\n
$$
\cdot \Omega = \Omega_{1} \times \Omega_{2} \times \cdots = \frac{1}{3 \text{ c N}} \Omega_{1j} \text{ (elements: } \left(\omega_{1}, \omega_{2}, \omega_{3}, \ldots\right))
$$
\n
$$
\cdot \varphi = \sigma\left(\text{uylinder sets}^{\text{u}}\right)
$$
\n
$$
\text{product } \sigma = \text{algebra}
$$
\n
$$
\begin{array}{c} \n\Omega_{1} \times \Omega_{1} \times \Omega_{2} \times A_{3} \times \Omega_{4} \times \cdots \\ \n\varphi = \sigma\left(\text{uylinder sets}^{\text{u}}\right) \\ \n\text{product measure} \end{array}
$$
\n
$$
\mathbb{P}\left(A_{1} \times A_{2} \times \cdots \times A_{n} \times \Omega_{n} \times \Omega_{n} \times \Omega_{n} \times \cdots\right) = \mathbb{P}\left(A_{1}\right) \cdot \mathbb{P}\left(A_{2}\right) \cdots \mathbb{P}\left(A_{n}\right)
$$
\n
$$
\text{Example: } \mathbb{P}\left(\text{How a die infinitely many times: } \left(\Omega_{n,0}, A_{n,0}, \mathbb{P}_{0}\right)
$$
\n
$$
\{1, \ldots, 1\} \cdot \mathbb{P}\left(\text{or } \mathbb{P}\
$$

(multivariant) hypergeometric distribution:

$$
\mathbb{P}(\{k_c\}_{c \in C} \zeta) = \frac{\prod_{c \in C} (k_c)}{\binom{N}{n}}
$$

 π (N_c)

Hypergeometric distribution for two colours: count the 1

0 0

0

 $\mathcal{O}_{\mathbf{D}}(1)$

Example: urn model: <u>ordered, without replacement</u>

$$
\iff \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)
$$

Let (Ω, A, P) be a probability space. Definition: Two events $A, B \in A$ are called <u>independent</u> if $P(A \cap B) = P(A) \cdot P(B)$. A family $(A_i)_{i\in I}$ with $A_i \in A$ is called independent if $\widehat{\mathbb{P}}\left(\bigcap_{j\in J}A_j\right) = \prod_{i\in J}\mathbb{P}(A_i) \quad \text{for all finite } J \subseteq \mathbb{I}.$ 2 throws <u>with order:</u> $(\Omega, \mathcal{A}, \mathbb{P})$

{1,2,3,4,5,6}² $\mathcal{P}(\Omega)$ uniform distribution
 $\mathbb{P}(\{(\omega_1, \omega_1)\}) = \frac{1}{36}$ Example: $A =$ "first throw gives 6" = { $(\omega_1, \omega_2) \in \Omega$ | $\omega_1 = 6$ } $B =$ "sum of both throws is $7 = \{(\omega_1, \omega_2) \in \Omega \mid \omega_1 + \omega_2 = 7\}$ $P(A) = \frac{1}{6}$, $P(B) = P(\{(1,6), (2,5), (3,4), (4,3), (5,2), (6,1)\}) = \frac{6}{32} = \frac{1}{6}$ $P(A \cap B) = P(\{(6, 1)\}) = \frac{1}{36} = P(A) \cdot P(B) \implies A, B$ are independent Example: $\begin{bmatrix} 1 & \sqrt{2} \\ \sqrt{2} & \sqrt{2} \end{bmatrix}$ throw a point into unit interval $(\Omega, \mathcal{A}, \mathbb{P})$ $[0,1]$ \bigoplus_{max} $(5,1)$ $\bigoplus_{\text{ density function}}$ $P([a,b]) = \int 1 dx = b-a \int \frac{\text{for } b>a}{\text{and } a,b\in \Omega}$ $f: \Omega \rightarrow \mathbb{R}$ with $f(x) = 1$ and indicator function: $1\!\!1_{[0,1]}(x) := \begin{cases} 1 & x \in [0,1] \ 0 & x \in [0,1] \end{cases}$ For two independent events $A, B \in A$, we have:

$$
\mathcal{L}_{\text{L,1}}(x) dx = \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathcal{L}_{\text{L,1}}(x) dx \cdot \mathcal{L}_{\text{L,1}}(x) dx
$$

$$
\mathcal{L}_{\text{L,1}}(x) dx = \mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B) = \mathcal{L}_{\text{L,1}}(x) dx \cdot \mathcal{L}_{\text{L,1}}(x) dx
$$

The Bright Side of Mathematics

Probability Theory - Part 10

Random variables $X : \Omega \longrightarrow \mathbb{R}$ with some properties.

 $X:\Omega\longrightarrow\mathbb{R}$, $(w_1,w_2)\mapsto w_1+w_2$ random variable gives sum of **the numbers the dice show**

 $\overline{Definition:}$ Let (Ω, A) and $(\widetilde{\Omega}, \widetilde{A})$ be measurable spaces (= event spaces). A map $X: \Omega \longrightarrow \widetilde{\Omega}$ is called a <u>random variable</u> if $X^1(\widetilde{A}) \in \mathcal{A}$ for all $\widetilde{A} \in \widetilde{\mathcal{A}}$.

Example: Throwing two dice uniform distribution

Examples:	(a) (Ω, \mathcal{A}) and $(\tilde{\Omega}, \tilde{\mathcal{A}})$, $\chi: \Omega \rightarrow \mathbb{R}$, $(\omega_{1}, \omega_{2}) \mapsto \omega_{1} + \omega_{2}$
$\{1,2,3,4,5,6\}$ $P(\Omega)$	\mathbb{R} $\mathcal{B}(\mathbb{R})$
$\chi^{1}(\tilde{A}) \in P(\Omega)$ for all $\tilde{A} \in \tilde{A}$, \Rightarrow χ is a random variable	

$$
\begin{array}{ccccccccc}\n\left\{1,2,3,4,5,6\right\}^{2} & \left\{\emptyset,1\right\} & \text{R} & \mathbb{B}(R) & \text{V} & \text{S} \\
\end{array}
$$
\n
$$
\begin{array}{ccccccccc}\n\left\{1,2,3,4,5,6\right\}^{2} & \left\{\emptyset,1\right\} & \text{R} & \mathbb{B}(R) & \text{V} & \text{S} \\
\end{array}
$$
\n
$$
\begin{array}{ccccccccc}\n\left\{1,2,3,4,5,6\right\}^{2} & \left\{\emptyset,1\right\} & \text{R} & \mathbb{B}(R) & \text{V} & \text{S} \\
\end{array}
$$

(b) $(0, 1)$ and $(0, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

 $Notation:$ Let (Ω, \mathcal{A}) and $(\widetilde{\Omega}, \widetilde{\mathcal{A}})$ be measurable spaces (= event spaces).</u> *random variable*

$$
\mathbb{P}(\mathsf{X}\in\mathsf{\tilde{A}}):=\mathbb{P}(\mathsf{X}^1(\mathsf{\tilde{A}}))=\mathbb{P}(\{\mathsf{u}\in\Omega\mid\mathsf{X}(\mathsf{u})\in\mathsf{\tilde{A}}\})
$$

For
$$
\mathbb{T}
$$
-additivity: Choose \mathbb{B}_{1} , \mathbb{B}_{1} , \mathbb{B}_{2} , ... $\in \mathbb{B}(\mathbb{R})$ pairwise disjoint.
\nThen: $i \neq j \Rightarrow X^{1}(\mathbb{B}_{i}) \cap X^{1}(\mathbb{B}_{j}) = X^{1}(\mathbb{B}_{i} \cap \mathbb{B}_{j}) = \emptyset$
\nso: $X^{1}(\mathbb{B}_{1})$, $X^{1}(\mathbb{B}_{1})$, $X^{1}(\mathbb{B}_{3})$... $\in \mathbb{A}$ pairwise disjoint.
\nAnd: $\mathbb{P}_{X}(\mathbb{D}_{i=1}^{n} \mathbb{B}_{j}) = \mathbb{P}\left(X^{1}(\mathbb{D}_{i=1}^{n} \mathbb{B}_{j})\right) = \mathbb{P}\left(\mathbb{D}_{i=1}^{n} X^{1}(\mathbb{B}_{j})\right)$
\nprobability measure $\equiv \sum_{j=1}^{\infty} \mathbb{P}(X^{1}(\mathbb{B}_{j})) = \sum_{j=1}^{\infty} \mathbb{P}_{X}(\mathbb{B}_{j})$ on
\nNotation: If $\widetilde{\mathbb{P}}$ probability measure and $\mathbb{P}_{X} = \widetilde{\mathbb{P}}$, then $X \sim \widetilde{\mathbb{P}}$.
\n**Example:** $\mathbb{D}^{\leq r}$ *n* tosses of the same coin $\left(\bigcap_{\substack{n=1\\n \neq j, n}} \mathbb{A}_{n} \mathbb{P}\right)$
\n $\mathbb{E}_{2}(\mathbb{A}_{j}^{n}) = \mathbb{P}^{4/5}$
\n $\mathbb{P}(\mathbb{B}_{j}) = \mathbb{P}^{4/5}$
\n $\mathbb{P}(\mathbb{B}_{j}) = \mathbb{P}^{4/5}$
\n $\mathbb{P}(\mathbb{B}_{j}) = \mathbb{P}^{4/5}$

$$
\chi(\omega) := \text{number of 1s in } \omega \implies \chi \sim \text{Bin}(n)
$$

 $p)$

Definition: Let be a probability space and let $X:\Omega\longrightarrow\mathbb{R}$, $Y:\Omega\longrightarrow\mathbb{R}$ be two random variables. Then X, Y are called independent if for all $X, Y \in \mathbb{R}$ $\chi^{-1}(-\infty, x]$ and $\chi^{-1}((-\infty, x])$ are independent events. $\iff \mathbb{P}(\vec{X}^1(-\infty, \vec{x})) \wedge \vec{Y}^1(-\infty, \vec{y})) = \mathbb{P}(\vec{X}^1(-\infty, \vec{x})) \cdot \mathbb{P}(\vec{Y}^1(-\infty, \vec{y}))$

 $\sqrt{\left(\left[-\infty,1\right]\right)^{1}}$

 \mathbb{R}

 $\mathbb R$

$$
\iff \mathbb{P}(X \le x, Y \le y) = \mathbb{F}_{x}(x) \cdot \mathbb{F}_{y}(y)
$$
\n
$$
\xrightarrow{\text{Example: Product space:}} \Omega = \Omega_{1} \times \Omega_{2}, \quad X: \Omega \to \mathbb{R}, \quad X(\omega_{1}, \omega_{2}) = \int_{\omega_{1}}^{\omega_{1}} \omega_{2} \cdot \mathbb{F}_{y}(\omega_{2}) d\omega_{1} d\omega_{2} d\omega_{2}
$$
\n
$$
Y: \Omega \to \mathbb{R}, \quad Y(\omega_{1}, \omega_{2}) = \int_{\omega_{2}}^{\omega_{2}} \omega_{2} \cdot \mathbb{F}_{y}(\omega_{1}, \omega_{2}) d\omega_{2}
$$

 \Rightarrow X, Y are independent random variables

$$
\begin{array}{ll}\n\text{Definition:} & A \text{ family } \left(X_i\right)_{i \in I} \text{ is called independent if} \\
& \text{for all } x_j \in \mathbb{R} \\
& \text{if } \text{for all } x_j \in \mathbb{R} \\
& \text{if } \text{for all finite } j \subseteq I \\
& \text{if } \text{if } x_j \leq x_j \text{ and } y_j \in J\n\end{array}
$$

The Bright Side of Mathematics

Probability Theory - Part 14 probability space $X: \Omega \longrightarrow \mathbb{R}$ random variable E(X) E R expectation of X (expected value, mean, expectancy...)

$$
\int_{A} g(X) dP = \int_{A} g(\chi(\omega)) dP(\omega) = \int_{X(A)} g(x) d(P_{\chi})(x)
$$
\n
$$
= \int_{X(A)} g(x) dP_{\chi}(x) = \int_{X(A)} g(x) f_{\chi}(x) dx
$$
\n
$$
= \int_{X(A)} g(x) dP_{\chi}(x) = \int_{X(A)} g(x) f_{\chi}(x) dx
$$
\n
$$
= \int_{X(A)} g(x) dP_{\chi}(x) = \int_{X(A)} g(x) f_{\chi}(x) dx
$$
\n
$$
= \int_{X(A)} g
$$

$$
\frac{\text{Remember:}}{\mathbb{E}(X)} = \begin{cases} \int x \cdot f_X(x) dx & \text{continuous case} \\ \frac{\sum_{x \in X(\Omega)} x \cdot \rho_x}{\sqrt{x}} & \text{discrete case} \end{cases}
$$

$$
\begin{array}{lll}\n\text{Example:} & \quad \chi: \Omega' \longrightarrow \mathbb{R} & \text{through } \text{a fair die} & \quad \chi(\omega) = \omega \\
\text{Example:} & \quad \chi: \Omega \longrightarrow \mathbb{R} & \text{through } \text{a fair die} & \quad \chi(\omega) = \omega \\
\text{E}(\chi) &= \sum_{x \in X(\Omega)} x \cdot \rho_x = 1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + \dots + 6 \cdot \frac{1}{6} = 3.5\n\end{array}
$$

The Bright Side of Mathematics

Probability Theory - Part 15

$$
\mathbb{E}(\mathsf{X}) := \int_{\Omega} \mathsf{X} \ d\mathbb{P}
$$

Example:
$$
X \sim Exp(\lambda)
$$
 (exponential distribution)

\n
$$
\mathbb{P}_{X}(A) = \int_{A} f_{X}(x) dx, \quad f_{X}(x) = \begin{cases} \lambda e^{\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}
$$
\n
$$
\mathbb{E}(X) = \int_{\Omega} X dP = \int_{R} x \cdot f_{X}(x) dx = \int_{0}^{\infty} x \cdot \lambda e^{\lambda x} dx = \frac{1}{\lambda}
$$

 $\frac{\text{Properties:}}{\text{max}}$ $\left(\Omega, \mathbb{A}, \mathbb{P}\right)$ probability space, $X, Y \colon \Omega \longrightarrow \mathbb{R}$ random variables, where $E(X)$ and $E(Y)$ exist.

(a)
$$
E(a \cdot X + b \cdot Y) = a \cdot E(X) + b \cdot E(Y) \text{ for all } a, b \in \mathbb{R}
$$

\n(b) If X, Y are independent, then:
$$
E(X \cdot Y) = E(X) \cdot E(Y)
$$

\n(c) If $\mathbb{P}_X = \mathbb{P}_Y$, then:
$$
E(X) = E(Y)
$$

\n(d) If $X \leq Y$ almost surely $\mathbb{P}(\{w \in \Omega | X(w) \leq Y(w)\}) = 1$,
\nthen:
$$
E(X) \leq E(Y)
$$

$$
\mathbb{F}(\sqrt{2}) \qquad \qquad \boxed{7}
$$

We need to assume that $\mathbb{E}(X^c) = \int_{\Omega} X^c dP$ exists

change-of-variables
\n
$$
\times \left(\begin{array}{c}\n\int x^2 \cdot f_X(x) dx \quad \text{continuous case} \\
\hline\n\end{array}\right)
$$
\n
$$
\times \left(\begin{array}{c}\n\int x^2 \cdot f_X(x) dx \quad \text{continuous case} \\
\hline\n\end{array}\right)
$$
\n
$$
\times \left(\begin{array}{c}\n\int x^2 \cdot f_X(x) dx \quad \text{confinuous case} \\
\hline\n\end{array}\right)
$$

$$
\begin{array}{lll}\n\text{Examples:} & \text{(a)} & \bigtimes \sim \text{Uniform}\left(\{x_1, x_2, \dots, x_n\}\right) & \text{discrete case with} & \mathbb{P}_{\chi}\left(\{x_i\}\right) = \frac{1}{h} \\
& \mathbb{E}(\chi) = \int_{\Omega} \chi \, d\mathbb{P} & = \sum_{j=1}^{h} x_j \, \mathbb{P}_{\chi}\left(\{x_j\}\right) = \frac{1}{h} \sum_{j=1}^{h} x_j & \text{arithmetic mean} \\
& \bigtimes \text{Var}\left(\chi\right) = \int_{\Omega} \left(\chi - \mathbb{E}(\chi)\right)^2 \, d\mathbb{P} & = \sum_{j=1}^{h} (x_j - \overline{x})^2 \cdot \mathbb{P}_{\chi}\left(\{x_j\}\right) \\
& = \frac{1}{h} \sum_{j=1}^{h} (x_j - \overline{x})^2 \\
& \text{(b)} & \bigtimes \sim \text{Exp}(\lambda) & \text{(exponential distribution)} & \mathbb{E}(\chi) = \frac{1}{h}\n\end{array}
$$

$$
\mathbb{E}(X^2) = \int_{\Omega} X^2 dP = \int_{\mathbb{R}} x^2 \cdot f_X(x) dx
$$

$$
f_{x}(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0 \\ 0, & x \le 0 \end{cases}
$$

$$
= \int_{0}^{\infty} \chi^{2} \cdot \lambda e^{-\lambda \cdot x} dx = \frac{2}{\lambda^{2}}
$$

$$
V_{\alpha r}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{1}{\lambda^2}
$$

BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics

Probability Theory - Part 17
\nstandard deviation =
$$
\sqrt{\text{variance}}
$$

\n**Definition:** $(\Omega, \mathcal{A}, \mathbb{P})$ probability space, $\chi \colon \Omega \to \mathbb{R}$ random variable,
\nwhere $\int_{\Omega} X^{\lambda} d\mathbb{P}$ exists. Then:
\n
$$
\mathbb{T}(X) = \sqrt{\text{Var}(X)}
$$
\nis called the standard deviation of X.
\n
$$
\mathbb{T}(X) = \sqrt{\mathbb{E}(X^2)} - \mathbb{E}(X)^2
$$
\n**Examples:** (a) $\chi \sim \text{Uniform}(\{x_1, x_2, ..., x_n\})$ discrete case with $\mathbb{P}_X(\{x_i\}) = \frac{1}{n}$
\n
$$
\mathbb{T}(X) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2}
$$

(b) $X \sim Normal(\mu, \sigma^2)$ continuous case with pdf

$$
\int_{X} (x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2} \cdot (\frac{x - \mu}{\sigma})^{2}} \qquad \qquad \mathbb{E}(X) = \mu
$$

The Bright Side of Mathematics

Probability Theory - Part 18

Properties of variance and standard deviation:

Let X , Y be independent random variables where $E(X^2)$ and $E(Y^2)$ exist. $Then:$ (a) $\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y)$ </u> (b) $\text{Var}(\lambda \times) = \lambda^2 \cdot \text{Var}(\times)$ for every $\lambda \in \mathbb{R}$ (c) $\nabla(\lambda \times) = |\lambda| \cdot \nabla(\times)$ for every $\lambda \in \mathbb{R}$

 $\frac{\text{Proof:}}{\text{Var}(X+Y)} = \mathbb{E}((X+Y)^2) - \mathbb{E}(X+Y)^2$ $= \mathbb{E}(X^2 + 2XY + Y^2) - \left(\mathbb{E}(X) + \mathbb{E}(Y)\right)^2$ = $E(X^{2}) + 2E(XY) + E(Y^{2}) - E(X)^{2} - 2E(X)E(Y) - E(Y)^{2}$ = $\text{Var}(X) + \text{Var}(Y) + 2 \cdot (\mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y))$ $=$ $E(X)E(Y)$
independence \overline{X} **(b)** $Var(\lambda X) = \mathbb{E}((\lambda X)^2) - \mathbb{E}(\lambda X)^2$

$$
= \lambda^{2} \mathbb{E}((X)^{2}) - \lambda^{2} \mathbb{E}(X)^{2} = \lambda^{2} \left(\mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}\right)
$$

$$
= \lambda^{2} \cdot \text{Var}(X)
$$

$$
\text{(c)} \quad \nabla(\lambda \times) = \sqrt{\text{Var}(\lambda \times)} \quad \stackrel{\text{(b)}}{=} |\lambda| \cdot \nabla(X)
$$

Probability Theory - Part 19

 ϕ **Definition:** $(\Omega, \mathbb{A}, \mathbb{P})$ probability space, $X, Y : \Omega \longrightarrow \mathbb{R}$ **random variables are finite** $\mathsf{Cov}\left(\mathsf{X},\mathsf{Y}\right) := \mathbb{E}\Big(\big(\mathsf{X}-\mathbb{E}(\mathsf{X})\big)\big(\mathsf{Y}-\mathbb{E}(\mathsf{Y})\big)\Big)$ $= \mathbb{E}(XY-X \mathbb{E}(Y) - Y \mathbb{E}(X) + \mathbb{E}(X) \mathbb{E}(Y))$ $\stackrel{\text{linearity}}{=} E(XY) - 2 \cdot E(Y) E(X) + E(X) E(Y)$ = $E(XY) - E(Y)E(X)$ is called the <u>covariance of X and Y </u>. **Remember: independent Cov uncorrelated only in special situations (for example: normally distributed)** $Cov(X, Y)^{2} \le Cov(X, X) Cov(Y, Y)$ **Property: Definition: Cov correlation coefficient** Example: $\Omega = \{a, b, c\}$, P uniform on Ω $\left(P(\{a\}) = P(\{b\}) = P(\{c\}) = \frac{1}{3}\right)$ $X, Y: \Omega \longrightarrow \mathbb{R}$, $X(a) = 1$ $X(b) = 0$ $X(c) = -1$ $Y(a) = 0$ $Y(b) = 1$ $Y(c) = 0$ \Rightarrow X·Y = 0, $\mathbb{E}(X) = 0 \Rightarrow cov(X, Y) = 0$ **Independence?** $P(X \le x | Y \le y) = P(X \le x) \cdot P(Y \le y)$ for all x, y $x = -1$
 $y = 0$: $P(\{c\}) = P(\{c\}) \cdot P(\{a, c\})$ 4

Definition: $\mathbb{P}_{X_1} = (\mathbb{P}_X)_T$ is called the <u>marginal distribution</u> of X **with respect to the first component.**

> $F_{X_1}(t) = P_{X_1}((-\infty, t])$ <u>marginal cumulative distribution function</u> $= \mathbb{P}_{\mathsf{X}}\left(\begin{pmatrix} -\infty & t \end{pmatrix} \times \mathbb{R} \times \cdots \times \mathbb{R}\right)$

> > n^h

 \mathbf{r}

 \sim 0

$$
= \mathbb{P}(\mathbf{X}_{1} \leq \mathbf{t}, \mathbf{X}_{2} \in \mathbb{R}, ..., \mathbf{X}_{n} \in \mathbb{R})
$$

Two important cases:

(a) (abs.) continuous:
$$
||x||_X
$$
 has a probability density function $t_X : \mathbb{R} \to \mathbb{R}$
\n
$$
\int_{X_4} (\frac{1}{k}) = \int_{\mathbb{R}^{n+1}} \int_{X} (t_1 x_1, x_2, ..., x_n) d(x_1,...,x_n) \underbrace{max[and probability density function}_{(only countably many zero non-zero)}
$$
\n
$$
\xrightarrow{marginal probability mass function}_{\in \mathbb{R}} \left(P_{k} \right)_{k \in \mathbb{R}} \underbrace{min[grad probability max]_{x \in \mathbb{R}^{n}}}_{\in \mathbb{R}}
$$
\nExample: $\chi: \Omega \to \mathbb{R}^2$ uniformly distributed on Δ
\n
$$
\int_{X} (x_1 x_1) = \begin{cases} 2, (x_1, x_2) \in \Delta \\ 0, (x_1, x_2) \notin \Delta \end{cases}
$$

$$
S_{X_1}(t) = \int_{-\infty}^{\infty} S_X(t, x_t) dx_t
$$

=
$$
\begin{cases} \int_{0}^{1-t} 2 dx_t & t \in [0, 1] \\ 0 & t \notin [0, 1] \end{cases}
$$

=
$$
\begin{cases} 2 - 2t, & t \in [0, 1] \\ 0 & t \notin [0, 1] \end{cases}
$$

marginal probability density function

The Bright Side of Mathematics

Probability Theory - Part 21

conditional probability:

$$
\mathsf{f}(\cdot | \mathsf{B}) : A \mapsto \mathsf{f}(\mathsf{A} | \mathsf{B})
$$

is probability measure

 $Delta$

$$
\underline{\mathsf{on:}} \quad (\Lambda, \mathcal{A}, \mathbb{P}) \quad \text{probability space, } \mathcal{B} \in \mathcal{A} \quad \text{with} \quad \mathbb{P}(\mathcal{B}) > 0
$$
\n
$$
\Rightarrow (\mathcal{A}, \mathcal{A}, \mathbb{P}(\cdot | \mathcal{B})) \quad \text{probability space}
$$

For a random variable $X: \Omega \longrightarrow \mathbb{R}$, we define:

 $E(X) = \int_{\Omega} X dP$ (expectation of X)

 $E(X | B) = \int_{\Omega} X dP(\cdot | B)$ (conditional expectation of X given B)

Remember:

$$
\mathbb{E}(\mathbf{X} | \mathbf{B}) = \frac{1}{\mathbf{P}(\mathbf{B})} \int_{\Omega} \mathbf{X} \mathbf{1}_{\mathbf{B}} d\mathbf{P}
$$
\n
$$
= \frac{1}{\mathbf{P}(\mathbf{B})} \mathbb{E}(\mathbf{1}_{\mathbf{B}} \mathbf{X})
$$
\n
$$
= \frac{1}{\mathbf{P}(\mathbf{B})} \mathbb{E}(\mathbf{1}_{\mathbf{B}} \mathbf{X})
$$
\n
$$
\mathbf{M}_{\text{indiator function:}} \mathbf{1}_{\mathbf{B}}(\omega) = \begin{cases} 1, & \omega \in \mathbb{R} \\ 0, & \omega \notin \mathbb{R} \end{cases}
$$

Example:

Example:
$$
X \sim \text{NORMAL}(0, 1^2)
$$
, $\int_X(x) = \frac{1}{\sqrt{x}} e^{-\frac{1}{2}x^2}$,

\n
$$
\mathbb{E}(X | \mathbb{B}) = \frac{1}{\rho(\mathbb{B})} \int_X \chi(\omega) \mathbb{1}_{\mathbb{B}}(\omega) dP(\omega) = \frac{1}{\rho(\mathbb{B})} \int_X \chi \mathbb{1}_{\mathbb{B}}(X^{\eta}(x)) \int_X(x) dx
$$
\n
$$
= \frac{1}{\rho(\mathbb{B})} \int_0^{\infty} x \int_X(x) dx = 2 \cdot \frac{1}{\sqrt{2\pi}} \int_0^{\infty} x e^{-\frac{1}{2}x^2} dx = \frac{2}{\sqrt{2\pi}} \left(-e^{-\frac{x^2}{2}}\right) \Big|_0^{\infty}
$$
\nGeneral example: $\mathbb{E}(\mathbb{1}_A | \mathbb{B}) = \int_{\Omega} \mathbb{1}_A dP(\cdot | \mathbb{B}) = \int_A dP(\cdot | \mathbb{B}) = P(A | \mathbb{B})$

Example: Throw one die: $X: \Omega \longrightarrow \mathbb{R}$, $B = \{X = S, X = 6\}$

$$
\mathbb{E}(\mathsf{X} \mid \mathsf{B}) = \frac{1}{\mathsf{P}(\mathsf{B})} \cdot \int_{\mathsf{B}} \mathsf{X} \, d\mathsf{P} = \frac{1}{\mathsf{P}(\mathsf{B})} \sum_{\mathsf{x}=\mathsf{S},\mathsf{s}} \mathsf{x} \cdot \mathsf{P}(\mathsf{X}=\mathsf{x})
$$
\n
$$
= \frac{1}{\frac{2}{6}} \cdot \left(5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} \right) = \frac{11}{2} = 5.5
$$

The Bright Side of Mathematics

Probability Theory - Part 22	
Recall:	$\chi: \Omega \longrightarrow \mathbb{R}$ discrete, \mathbb{B} event with $\mathbb{P}(\mathbb{B}) > 0$
$\mathbb{E}(\chi \mathbb{B}) = \int_{\Omega} \chi d\mathbb{P}(\cdot \mathbb{B}) = \sum_{x} x \cdot \mathbb{P}(\chi = x \mathbb{B})$	
Consider $\Upsilon: \Omega \longrightarrow \mathbb{R}$ discrete, $\mathbb{B} = \{Y = y\}$.	
Define:	$\mathbb{S}(\gamma) := \mathbb{E}(\chi \gamma = \gamma) = \sum_{x} x \cdot \frac{\mathbb{P}(\chi = x \text{ and } \gamma = \gamma)}{\mathbb{P}(\gamma = \gamma)}$
0	$\int_{\mathbb{S}(\gamma)} \chi$

 $f(Y): \Omega \longrightarrow \mathbb{R}$ is called the <u>conditional expectation of X given Y</u> and denoted by $E(X|Y)$

 $\frac{Example:}{The time of the throw, Ω = {1, ..., 6}, \times : Ω \longrightarrow R checks if number is even$ $X(\omega) = \begin{cases} 1, & \omega \in \{2, 4, 6\} \\ 0, & \text{else} \end{cases}$ $Y: \Omega \longrightarrow \mathbb{R}$ checks if number is the highest $\sqrt{\omega} = \begin{cases} 1, & \omega = 6 \\ 0, & \text{else} \end{cases}$ **and and**

 ϕ **Definition for (abs.)** continuous case: $(X, Y) : \Omega \longrightarrow \mathbb{R}^2$ with pdf $f_{(X,Y)} : \mathbb{R}^2 \rightarrow \mathbb{R}$ $g(y) := \mathbb{E}(X | Y = y) = \int_{\mathbb{R}} x \cdot \underbrace{\frac{f(x,y)(x,y)}{f_y(y)}}_{\text{conditional density}} dx$

 $E(X|Y) = g(Y) = g \cdot Y$ is called the <u>conditional expectation of X given Y</u>

Properties: (a) X,Y independent
$$
\implies
$$
 $\mathbb{E}(X|Y) = \mathbb{E}(X)$ and
 $\mathbb{E}(XY|Y) = \mathbb{E}(X) \cdot Y$

$$
E(X|X) = X
$$
\n
$$
E(E(X|Y)) = E(X)
$$

(Law of total probability)

The Bright Side of Mathematics

The Bright Side of Mathematics

Probability Theory - Part 24

Definition: Let
$$
(X_t)_{t \in T}
$$
 be a stochastic process with $\overline{I} \subseteq \mathbb{Z}$ or $\overline{I} \subseteq \mathbb{R}$.

\nWe call $(X_t)_{t \in T}$ Markov process or Markov chain if

\nfor all $h \in \mathbb{N}$, $t_1, t_2, ..., t_n, t \in T_1$, $t_1 < t_2 < ... < t_n < t$,

\nand $x_1, x_1, ..., x_n, x \in \mathbb{R}$, we have:

\n
$$
\mathbb{P}(X_t = x \mid X_{t_1} = x_1, X_{t_2} = x_1, ..., X_{t_n} = x_n)
$$
\n
$$
= \mathbb{P}(X_t = x \mid X_{t_n} = x_n)
$$
\nfor discrete-time Markov chain:

\n
$$
\begin{array}{c}\n\overline{x_n} \\
\overline{y_n} \\
$$

transition probability from to at time

 x λ $time = k$ $time = kt + 1$

If $\rho_{x,y}(k, k+1)$ does not depend on k , then we say:

the Markov chain is time-homogeneous

Here:
$$
\Gamma = \begin{pmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 0 & 1 \end{pmatrix}
$$

\nStart the game with $q^0 = (1, 0, 0)$ \longrightarrow $q^1 = (\frac{1}{2}, \frac{1}{2}, 0)$

one time-step
\n
$$
q^{2} = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{4}\right)
$$

$$
q^{2} = q^{1} P
$$
 (vector-matrix-multiplication)
\n
$$
\Rightarrow q^{n} = q^{0} P^{n}
$$
 Law of total probability
\n
$$
q^{n-2} = q^{0} P^{n}
$$
 Law of total probability

The Bright Side of Mathematics

Probability Theory - Part 25

stochastic process: $(X_t)_{t \in T}$ subset of Z or R

discrete-time Markov chains + time-homogeneous:

depends only on x and $y \searrow$

 γ χ

General example:
$$
X_k: \Omega \rightarrow \{1, 2, ..., N\}
$$

\nTo $\overline{Q} \rightarrow \overline{Q} \rightarrow \cdots \rightarrow \overline{Q} \rightarrow \cdots \rightarrow \overline{Q}$
\nstart at $k = 0$: probability mass function of X_0 (pm of \mathbb{P}_{X_k})
\nis given by a row vector $\mathbb{q}^0 \in \mathbb{R}^{1 \times N}$
\n
$$
(\mathbb{q}^0)_{m} = \mathbb{P}(X_0 = m)
$$
\nat $k = 1$: $(\mathbb{q}^1)_{m} = \mathbb{P}(X_1 = m) = \sum_{k=1}^{N} \mathbb{P}(X_1 = m | \mathbb{B}_k) \cdot \mathbb{P}(\mathbb{B}_k)$ \n
$$
\begin{cases}\n\text{law of total probability} & \text{if } \mathbb{P}_{k=1}^{N} \\
\vdots & \vdots \\
\mathbb{P}_{k=1}^{N} & \text{if } \mathbb{P}(\mathbb{B}_k) \cdot \mathbb{P}(X_1 = m | \mathbb{B}_k)\n\end{cases}
$$

$$
= \sum_{i=1}^{N} P(X_{o} = i) \cdot P(X_{1} = m | X_{o} = i) = (q^{0} P)_{m}
$$

by induction: $q^k = q^0 \cdot \mathcal{P}^k$

Definition: $a \in \mathbb{R}^{1 \times N}$ is called a stationary distribution for the Markov chain if

disjoint union!

 $P_{x,y} := P(X_{k+1} = y | X_k = x)$ independent of $k \in T \subseteq \mathbb{Z}$ \bigcup <u>transition matrix</u> $P = (P_{x,y})_{x,y}$

Important: . entries of P lie in $[0, 1]$

. P acts on row vectors from the right

Section	Figure	Example
\n <p>Note:</p> \n $q^{\circ} = q$ \n\n <p>Note:</p> \n $q^{\circ} = q$ \n\n <p>Note:</p> \n $q^{\circ} = q$ \n\n <p>Example</p> \n <p><</p>		

$$
\mathcal{P} = \begin{pmatrix} \frac{1}{L} & \frac{1}{L} & 0 \\ \frac{1}{L} & 0 & \frac{1}{L} \\ 0 & 0 & 1 \end{pmatrix} \implies \text{Ker} \begin{pmatrix} \varphi^T - 1 & \varphi \end{pmatrix} = \text{Ker} \begin{pmatrix} -\frac{1}{2} & \frac{1}{L} & 0 \\ \frac{1}{L} & -1 & 0 \\ 0 & \frac{1}{L} & 0 \end{pmatrix}
$$
\n
$$
\xrightarrow{\text{row operations}} \text{Ker} \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \text{Span} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}
$$
\n
$$
\xrightarrow{\text{only stationary distribution}} q = \begin{pmatrix} 0, 0, 1 \end{pmatrix}
$$

The Bright Side of Mathematics

Probability Theory - Part 26

$$
(\Omega, \mathcal{A}, \mathbb{P})
$$
 probability space

Markov's inequality: $X: \Omega \longrightarrow \mathbb{R}$ random variable.

Then
$$
|X|: \Omega \longrightarrow [0, \infty)
$$
 satisfies:

$$
\mathbb{P}(|X| \ge \epsilon) \le \frac{\mathbb{E}(|X|^p)}{\epsilon^p} \quad \text{for any } \epsilon > 0, \quad p > 0
$$

$$
\frac{\text{Proof:}}{\text{And:}} \quad \text{We have:} \quad |\mathbf{X}(\omega)| \geq \varepsilon \quad \Longleftrightarrow \quad |\mathbf{X}(\omega)|^{\mathfrak{f}} \geq \varepsilon^{\mathfrak{f}} \quad \text{indicator function}
$$
\n
$$
\text{And:} \quad \varepsilon^{\mathfrak{f}} \quad \mathbb{P}(|\mathbf{X}| \geq \varepsilon) = \varepsilon^{\mathfrak{f}} \cdot \mathbb{P}(|\mathbf{X}|^{\mathfrak{f}} \geq \varepsilon^{\mathfrak{f}}) = \varepsilon^{\mathfrak{f}} \cdot \mathbb{E}(\mathbb{1}_{\{|\mathbf{X}|^{\mathfrak{f}} \geq \varepsilon^{\mathfrak{f}}\}})
$$
\n
$$
= \mathbb{E}(\varepsilon^{\mathfrak{f}} \cdot \mathbb{1}_{\{|\mathbf{X}|^{\mathfrak{f}} \geq \varepsilon^{\mathfrak{f}}\}}) \leq \mathbb{E}(|\mathbf{X}|^{\mathfrak{f}}) \quad \Box
$$

Chebyshev's inequality: $X: \Omega \longrightarrow \mathbb{R}$ random variable where $\mathbb{E}(|X|) < \infty$. Var Then: for any Proof: Define: $\widetilde{X} := X - \mathbb{E}(X)$. Hence: $Var(X) = Var(\widetilde{X}) = \mathbb{E}(\widetilde{X}^2)$ $P(|X - E(X)| \ge \varepsilon) = P(|\tilde{X}| \ge \varepsilon) \le \frac{E(|\tilde{X}|^2)}{\varepsilon^2} = \frac{\text{Var}(X)}{\varepsilon^2}$ Markov's inequality for $\rho = 2$ \Box

The Bright Side of Mathematics

Probability Theory - Part 27

For k = 3:
$$
\mathbb{P}(\times \in [\mu - 3\pi, \mu + 3\pi]) \ge \frac{8}{3} \ge 88.8
$$

 $k\sigma$ -intervals for the normal distribution: $\mu = 0$, $\sigma = 1$

We have:
$$
\mathbb{E}(\overline{X}_n) = \mathbb{E}\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = \frac{1}{n}\sum_{k=1}^n \mathbb{E}(X_k) = \mu
$$

$$
Var(\overline{X}_n) = Var\left(\frac{1}{n}\sum_{k=1}^n X_k\right) = \frac{1}{n^2}\sum_{k=1}^n Var(X_k) = \frac{\sigma^2}{n}
$$

By Chebyshev's inequality:

$$
\mathbb{P}\left(|\overline{X}_{n}-E(\overline{X}_{n})|\geq\epsilon\right) \leq \frac{\text{Var}(\overline{X}_{n})}{\epsilon^{2}} \quad \text{for any } \epsilon>0.
$$

Example:

Project: (None) -

 \mathbb{Z}

The Bright Side of Mathematics

Probability Theory - Part 30

Strong law of large numbers: $X_k: \Omega \longrightarrow \mathbb{R}$ random variables. Let $(X_k)_{k\in\mathbb{N}}$ be i.i.d. and $\mathbb{E}(|X_1|) < \infty$. Then for $\mu := \mathbb{L}(\lambda_1)$: $\frac{1}{n} > \frac{1}{n} \lambda_k(\omega) =: \overline{X}_1(\omega) \xrightarrow{n \to \infty} \mu$ for almost surely This means: $P(\{\omega \in \Omega \mid \overline{X}_n(\omega) \stackrel{h \to \infty}{\longrightarrow} \mu\}) = 1$ (we could have $\overline{X}_n(\omega) \stackrel{h \to \infty}{\longrightarrow} \mu$ but the probability is zero) $Remark:$ almost sure convergence \implies convergence in probability</u>

strong law of large numbers \implies weak law of large numbers

(1) expectation should be zero:
$$
\overline{X}_n - \mu
$$

(2) variance should be one: $(\overline{X}_n - \mu)/(\frac{\sigma}{\sqrt{n}})$

Central limit theorem: For $(X_k)_{k\in\mathbb{N}}$ i.i.d. with $Var(X_i) < \infty$, define: $Y_n := \left(\frac{1}{n}\sum_{k=1}^{n}X_k - \mu\right) \cdot \left(\frac{\sigma}{\sqrt{n}}\right)^1$ where $\mu := \mathbb{E}(X_1)$, $\sigma := \sqrt{\text{Var}(X_1)}$

Then the cdf of Y_n converges to the cdf of Normal($0, 1^2$) :

$$
\mathbb{P}(Y_n \le x) \xrightarrow{n \to \infty} \overline{\Phi}(x) \quad \text{for every } x \in \mathbb{R}
$$
\n
$$
\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^2} dt
$$