

is completely determined by $P(\{\omega\})$ for all $\omega \in \Omega$ probability mass function: $(P_{\omega})_{\omega \in \Omega}$ with $P_{\omega} \ge 0$ $\sum_{\omega \in \Omega} P_{\omega} = 1$

Define:
$$\mathbb{P}(A) := \sum_{\omega \in A} P_{\omega}$$

Example: $\Omega = \{1, 2, 3, 4, 5, 6\}$ unfair die $p_{4} = \frac{1}{10}$ $p_{2} = \frac{1}{10}$ $p_{3} = \frac{1}{10}$ $p_{4} = \frac{1}{10}$ $p_{5} = \frac{1}{10}$ $p_{6} = \frac{1}{2}$ $P(\{1, 2, 3, 4, 5\}) = \sum_{\omega=1}^{5} p_{\omega} = 5 \cdot \frac{1}{10} = \frac{1}{2}$ can be described by

 $\mathbb{P}([a,b]) = \frac{1}{2}(b-a)$

probability density function:
$$f: \Omega \longrightarrow \mathbb{R}$$
 with
measurable:
 $f(x) \ge 0$
 $f(x) dx = 1$
 Ω

Define:
$$\mathbb{P}(A) := \int f(x) dx$$

Example:
$$\Omega = [0, 2]$$

 $f: \Omega \rightarrow \mathbb{R}$ with $f(x) = \frac{1}{2}$
Hence: $\int_{0}^{1} f(x) dx = \frac{1}{2} \cdot 2 = 1$
 $\mathbb{P}(A) = \int_{A} f(x) dx = \frac{1}{2} \int_{A} 1 dx = \frac{1}{2}$ Lebesgue measure (A)