

For
$$\mathbb{T}$$
-additivity: Choose $\mathbb{B}_{1}, \mathbb{B}_{1}, \mathbb{B}_{2}, \dots \in \mathcal{B}(\mathbb{R})$ pairwise disjoint.
Then: $i \neq j \Rightarrow \chi^{-1}(\mathbb{B}_{i}) \cap \chi^{-1}(\mathbb{B}_{j}) = \chi^{-1}(\mathbb{B}_{i} \cap \mathbb{B}_{j}) = \emptyset$
So: $\chi^{-1}(\mathbb{B}_{i}), \chi^{-1}(\mathbb{B}_{2}), \chi^{-1}(\mathbb{B}_{3})... \in \mathcal{A}$ pairwise disjoint.
And: $\mathbb{P}_{X}(\bigcup_{j=1}^{\infty} \mathbb{B}_{j}) = \mathbb{P}(\chi^{-1}(\bigcup_{j=1}^{\infty} \mathbb{B}_{j})) = \mathbb{P}(\bigcup_{j=1}^{\infty} \chi^{-1}(\mathbb{B}_{j}))$
 $\mathbb{P}_{i \leq n}$
probability measure $= \sum_{j=1}^{\infty} \mathbb{P}(\chi^{-1}(\mathbb{B}_{j})) = \sum_{j=1}^{\infty} \mathbb{P}_{X}(\mathbb{B}_{j})$
Notation: If $\widetilde{\mathbb{P}}$ probability measure and $\mathbb{P}_{X} = \widetilde{\mathbb{P}}$, then $X \sim \widetilde{\mathbb{P}}$.
Example: $\mathbb{P}(\mathbb{P}(\mathbb{A}) \to \mathbb{R}$
 $\chi(\mathbb{Q}) := \text{number of 1s in } \mathbb{Q}$
 $\mathbb{P}_{i \leq n} \to \mathbb{R}$
 $\mathbb{P}_{i \leq n}(n, p)$