BECOME A MEMBER

ON STEADY

The Bright Side of Mathematics Probability Theory - Part 17 standard deviation = $\sqrt{variance}$ (Ω, A, P) probability space, $X: \Omega \longrightarrow \mathbb{R}$ random variable, Definition: where $\int X^2 dP$ exists. Then: $\nabla(X) = \sqrt{Var(X)}$ is called the standard deviation of X. $\mathbb{T}(X) = \sqrt{\mathbb{E}(X^{2}) - \mathbb{E}(X)^{2}}$ Examples: (a) $\chi \sim \text{Uniform}\left(\{x_1, x_1, \dots, x_n\}\right)$ discrete case with $\mathbb{P}_{\chi}(\{x_i\}) = \frac{1}{n}$

$$(\mathbf{x}) = \sqrt{\frac{1}{n} \cdot \sum_{j=1}^{n} (\mathbf{x}_j - \mathbf{x})^2 }$$

(b) $X \sim Normal(\mu, \sigma^2)$ continuous case with pdf