Introduction

Definition 1. Real numbers

The real numbers are a non-empty set R together with the operations $+:\mathbb{R}\times\mathbb{R}\to\mathbb{R}$ and $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and an ordering relation $\leq : \mathbb{R} \times \mathbb{R} \to \{True, False\}$ that fulfil the following rules

(A) Addition

- (A1) associative: $x + (y + z) = (x + y) + z$
- (A2) neutral element: There is a (unique) element 0 with $x + 0 = x$ for all x.
- (A3) inverse element: For all x there is a (unique) y with $x + y = 0$. We write for this element simply $-x$.
- (A_4) commutative: $x + y = y + x$
- (M) Multiplication
	- (M1) associative: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
	- (M2) neutral element: There is a (unique) element $1\neq 0$ with $x \cdot 1 = x$ for all x.
	- (M3) inverse element: For all $x \neq 0$ there is a (unique) y with $x \cdot y = 1$. We write for this element simply x^{-1} .
	- (M_4) commutative: $x \cdot y = y \cdot x$
- (D) Distributivity: $x \cdot (y + z) = x \cdot y + x \cdot z$.
- (O) Ordering
	- (O1) $x \leq x$ is true for all x.
	- (O2) If $x \leq y$ and $y \leq x$, then $x = y$.
	- (O3) transitive: $x \leq y$ and $y \leq z$ imply $x \leq z$.
	- (O4) For all $x, y \in X$, we have either $x \leq y$ or $y \leq x$.
	- (O5) $x \leq y$ implies $x + z \leq y + z$ for all z.
	- (O6) $x \leq y$ implies $x \cdot z \leq y \cdot z$ for all $z \geq 0$.
	- (O7) $x > 0$ and $\varepsilon > 0$ implies $x < \varepsilon + \cdots + \varepsilon$ for sufficiently many summands.
- (C) Let $X, Y \subset \mathbb{R}$ be two non-empty subsets with the property $x \leq y$ for all $x \in X$ and $y \in Y$. Then there is a $c \in \mathbb{R}$ with $x \leq c \leq y$ for all $x \in X$ and $y \in Y$.

Remark 2.

In the video, we described the completeness axiom with the help of sequences. Then it sounds like:

Completeness: Every sequence $(a_n)_{n\in\mathbb{N}}$ with the property *[For all* $\varepsilon > 0$ *there is an* $N \in \mathbb{N}$ with $|a_n - a_m| < \varepsilon$ for all $n, m > N$ has a limit.

Later, we will show the equivalence of both descriptions.

Definition 3. Absolute value for real numbers The **absolute value** of a number $x \in \mathbb{R}$ is defined by $|x| := \begin{cases} x & \text{if } x \geq 0, \end{cases}$ $-x$ if $x < 0$.

Exercise 4.

Use the axioms to show: $(1): 0 \cdot x = 0$ $(2):$ $-x = (-1) \cdot x$ $(3) : (-1) \cdot (-1) = 1$ $(4) : 1 > 0$

$$
(1): \ 0 \cdot x \stackrel{(A2)}{=} (0+0)x \stackrel{(D)}{=} 0x + 0x \stackrel{(A2)}{=} 0x = 0
$$
\n
$$
(2): \ -x \stackrel{(*)}{=} 0x + (-x) \stackrel{(A3)}{=} (1+(-1))x + (-x) \stackrel{(D)}{=} x + (-1)x + (-x) \stackrel{(A2-4)}{=} (-1)x
$$
\n
$$
(3): \ x(-1)(-1) \stackrel{(**)}{=} -(-x) \stackrel{(A3)}{=} x \stackrel{(M2)}{=} (-1) \cdot (-1) = 1
$$
\n
$$
(4): \text{Try for yourself.}
$$

Exercise 5. Learn to sketch

Sketch the following subsets of \mathbb{R} :

(a)
$$
A := \{x \in \mathbb{R} \mid x < x^2\}
$$

(b) $B := \left\{ x \in \mathbb{R} \mid x > 0 \wedge \frac{10}{x} - 3 \leq \frac{4}{x} + 1 \right\}$

Exercise 6. Sketch in two dimensions

Sketch the following subsets of \mathbb{R}^2 :

(a)
$$
M_1 := \{(x, y) \in \mathbb{R}^2 \mid (x - 3)^2 + (y + 4)^2 \le 9\}
$$

(b) $M_2 := \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 \ge 1\}$

Exercise 7. Use the axioms!

Prove for $x, y, z \in \mathbb{R}$ the following statements by using the axioms of the real numbers:

- (a) $x \leq y \land z \leq 0 \Rightarrow xz \geq yz$
- (b) $||x| |y|| \le |x y|$
- (c) $|xy| \leq \frac{1}{2}(x^2 + y^2)$
- (d) $x, y \geq 0 \Rightarrow xy \leq \frac{1}{4}$ $\frac{1}{4}(x+y)^2$