Introduction

Definition 1. Real numbers

The real numbers are a non-empty set \mathbb{R} together with the operations $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ and an ordering relation $\leq : \mathbb{R} \times \mathbb{R} \to \{ \text{True, False} \}$ that fulfil the following rules

(A) Addition

- (A1) associative: x + (y + z) = (x + y) + z
- (A2) neutral element: There is a (unique) element 0 with x + 0 = x for all x.
- (A3) inverse element: For all x there is a (unique) y with x + y = 0. We write for this element simply -x.
- (A4) commutative: x + y = y + x
- (M) Multiplication
 - (M1) associative: $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 - (M2) neutral element: There is a (unique) element $1 \neq 0$ with $x \cdot 1 = x$ for all x.
 - (M3) inverse element: For all $x \neq 0$ there is a (unique) y with $x \cdot y = 1$. We write for this element simply x^{-1} .
 - (M4) commutative: $x \cdot y = y \cdot x$
- (D) Distributivity: $x \cdot (y+z) = x \cdot y + x \cdot z$.
- (O) Ordering
 - (O1) $x \leq x$ is true for all x.
 - (O2) If $x \leq y$ and $y \leq x$, then x = y.
 - (O3) transitive: $x \leq y$ and $y \leq z$ imply $x \leq z$.
 - (O4) For all $x, y \in X$, we have either $x \leq y$ or $y \leq x$.
 - (O5) $x \leq y$ implies $x + z \leq y + z$ for all z.
 - (06) $x \le y$ implies $x \cdot z \le y \cdot z$ for all $z \ge 0$.
 - (07) x > 0 and $\varepsilon > 0$ implies $x < \varepsilon + \cdots + \varepsilon$ for sufficiently many summands.
- (C) Let $X, Y \subset \mathbb{R}$ be two non-empty subsets with the property $x \leq y$ for all $x \in X$ and $y \in Y$. Then there is a $c \in \mathbb{R}$ with $x \leq c \leq y$ for all $x \in X$ and $y \in Y$.

Remark 2.

In the video, we described the completeness axiom with the help of sequences. Then it sounds like:

Completeness: Every sequence $(a_n)_{n \in \mathbb{N}}$ with the property [For all $\varepsilon > 0$ there is an $N \in \mathbb{N}$ with $|a_n - a_m| < \varepsilon$ for all n, m > N] has a limit.

Later, we will show the equivalence of both descriptions.

Definition 3. Absolute value for real numbers The absolute value of a number $x \in \mathbb{R}$ is defined by $|x| := \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0. \end{cases}$

Exercise 4.

Use the axioms to show: $(1): 0 \cdot x = 0$ (2): $-x = (-1) \cdot x$ $(3): (-1) \cdot (-1) = 1$ (4): 1 > 0

(1):
$$0 \cdot x \stackrel{(A2)}{=} (0+0)x \stackrel{(D)}{=} 0x + 0x \stackrel{(A2)}{\Longrightarrow} 0x = 0$$

(2): $-x \stackrel{(*)}{=} 0x + (-x) \stackrel{(A3)}{=} (1+(-1))x + (-x) \stackrel{(D)}{=} x + (-1)x + (-x) \stackrel{(A2-4)}{=} (-1)x$
(3): $x(-1)(-1) \stackrel{(**)}{=} -(-x) \stackrel{(A3)}{=} x \stackrel{(M2)}{\Longrightarrow} (-1) \cdot (-1) = 1$
(4): Try for yourself.

Exercise 5. Learn to sketch

Sketch the following subsets of \mathbb{R} :

(a)
$$A := \{x \in \mathbb{R} \mid x < x^2\}$$

(b) $B := \left\{ x \in \mathbb{R} \mid x > 0 \land \frac{10}{x} - 3 \le \frac{4}{x} + 1 \right\}$

Exercise 6. Sketch in two dimensions

Sketch the following subsets of \mathbb{R}^2 :

(a)
$$M_1 := \{(x, y) \in \mathbb{R}^2 \mid (x - 3)^2 + (y + 4)^2 \le 9\}$$

(b) $M_2 := \{(x, y) \in \mathbb{R}^2 \mid x^2 - y^2 \ge 1\}$

Exercise 7. Use the axioms!

Prove for $x, y, z \in \mathbb{R}$ the following statements by using the axioms of the real numbers:

- (a) $x \le y \land z \le 0 \implies xz \ge yz$
- (b) $||x| |y|| \le |x y|$ (c) $|xy| \le \frac{1}{2} (x^2 + y^2)$
- (d) $x, y \ge 0 \implies xy \le \frac{1}{4} (x+y)^2$