The Bright Side of Mathematics

The following pages cover the whole Real Analysis course of the
Bright Side of Mathematics. Please note that the creator lives from
generous supporters and would be very happy about a donation. See
more here: https://thsom.de/support
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Real Analysis — Part 1

b
Calculus, analysis, infinitesimal calculus,.. 0‘5- j
('/d_ / yokx
Goal: Understanding differential and integral calculations 2 a
Topics:  Limits, continuity, derivatives, integrals.
Foundation:  Real numbers: R ~~—> Start Learning Mathematics

L—> Start Learning Reals

Axioms of the veals: A non—empty set R together with operations + , « and ordering <

is called the real numbers if it satisfies:

(A) (FR( +, O) is an abelian group

(M) (R\ioqg , ’]) is an abelian group (1#0)
(D) distributive law X'()I'l‘ 1) = Xy + X2

(0) < is a total order, compatible with + and * , Archimedean property

X if X220

(C) Every Cauchy sequence is a convergent sequence, |x| ::i
-X if X< 0

Absolute value:
| X]
|xyl = |x]-1yl ~A—
1 | N,
| 7

Ix+yl < |x] +]yl '
4 O X complete number line R
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Sequences: A sequence of real numbers:

a map a: N — [R
or O\ZINO%”{

Notations: (0‘“ O, , O, ) infinite list of numbers

00
o, ) )
neN or ( " Jn=t or (O\h

Examples: (a) )em ( ']) N /I /| /| ) .m .
h€ ~
-1’\_/1 R
Graph: [,IR[_\ . .
} f { 1 1 t 1 >
1 2 3 ¢ S5 7
_1 [ ] e [ ] IN
— (L _ 14 1 41
(o) ( Lm—(h)hem —(4,%,311-/?'?'7'?‘15' )
R
Y We will see:
—t > fim a, = 0
17 2 3 4% s (& F - lN h—>0a

(o) ( = (z)mN = (Z,%, &,16,3L, (% 118, 1s¢, >

Definition: A sequence (a“)nem is called convergent to o € R if

Yes 0 INeN VYnx=N : la,-a|<e

€ neighbourhood of &

| ] 1 1 ( | 11 h”lhn 1 I\
| | \ | LR L e
a, o, a-¢ 2N o O+e

\

1 there is no such A E R, we call the sequence (O\h)hemolivevqen’r.

A N-¢

Example: (O\")hg;m: (?>heN is convergent to O € R . 404_\.--/::?--._9

Archimedean property:
Proof: Let €3> 0., We choose NeN sueh that N-¢ >1.

Then for haN,wehave: —0\):_1_.<4—<Q
=N .

n
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Example: (O\H)helN :((—4)’">MN is divergent,
Proof: Assume the sequence (O\n)hemis convergent to  ac R
distance
€ : &, -
Ye>0 INeN YnzN low-al<e e
T 7
Choose: €=1  Then: |ay-a|<¢ S 1 N
and |0‘N+1_ 0\| <¢
Hence: H -0\|<€ and |(—‘|)-0\|<€
7
L=1-CD] = |1-a+a-(D] € |1-o] + o - (-1)] = [1-al+]1)-al<2

De‘ﬁﬂi‘\'iOV\: A segquence (O\h)hGIN is called bounded if
] R

JCelR Vne N : |0\n|_<_C e C

Otherwise, the sequence is called unbounded.

Important fact: (O\h)hgm convergent => (O\Dhgm bounded

Proof: There is ae R with:

€ neighbourhood of &

V

l 1 ) 1 A T ||m|..| . |\
I \ | T LR L e o a
a, o, a-£ 2 o oO+e

C:: YhaX(\m], \a.,_ll \0‘3l 7 oo/ \O\N_1‘) |a|+e>

Important fact: (O\h)hgm convergent =>  There is only one limit aec R
A\
y ‘:‘aim a,
Proof: Assume there are fwo limits A # ™. €= T‘_“O\—’(\;\l > 0 I
: . _ — e —>
A INeN Vnx=N : Io‘h 0‘|<€ o '3
N : a, - n
INeN Vnx=N |a,- &) < ¢ e  zc€
Theretore: For n > vax(N,N): | -&] = |- a,+0,-%] < \U\—o\hl+‘ah—'(}'\|
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(O\h)hem convergent to A€ R zém a, = &
h—=>00
€ neighbourhood of & Nn—> 0o
\ 1 1 { 1 11 ||M|.n PR |\ a H a.
\ \ | \|||u||u||||/ h
a-¢ 2 o O+E
Graph
L. 0, +b,,
Theorem on limits: (O\h-)hem p (En)nem convergen! sequences, . L . « ° . b,
l. : ; 1 : N a" N
T T T T T T 7
Then: (a) A
lim(O\h+ Lh) = [,Lm A, t lim En
h=o00 h—=>00 h—=>00
(b)
: . = ['m A, = [im [3
hl'_;v: (Qh Lh) h—;oo " h—=>00 "
(e) fo (2 ) Lim o,
Lm =
h—=>00 Ln I,LW) [)
%O h—=>00 ! %O
h=>00
Example: C. = Lo +Sn -4 convergent? We know: 4? —> 0
’ SSnt+n +1 limit? By (b): L4 2=
1 S 4
_ nL.2h1+S-h—4 . 2+ T—ﬁ h—>oo> z+0_0 2
%_ _Sh’l*’h +4 —5 + 1? + %_ with limit theorems -8 +0 +0 B S
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(a”)nem / (En)nem convergent segquences,

:> [Lm(o\h-rlah) :[im A, T !;v: En p Lm( L) :Zim A, Lml}

h=>o00 h—=>00 h—=>00 h=>00 A
icular: : . = * Li
In particular hl_;:(a\ L,,) h_;:(L )
Graph
Properties: (O\h)hgm / (En)nem convergent sequences, 3 ¢ et L
1 : : 1 :. ? a N
(a) Monotonicity: &, < E for all ne N 1t 3 % 5 0 -
> l'-m 0\ < ZLVY) [:)
h—=>00
(b) Sandwich theorem: &, < C < En for all ne N and !;vz a4, = h[_;m E
__> (C hvhelN convergent with !_:)V: C, = h[_;vz 4, = hl_;vz E

Proof of (b): (g - a,) —5 dinc Lim b, — fima, = 0O

k/Y'\/ h=>00
ID \/Y——Oi

d,,::Ch—o\n = 0 < Okhé-‘:)n_a\n

(by the limit theorems)

Let €> 0. Then there is NEN with: Vnz N . “)n - 4, < €
|dn-01"
= (dh)em is convergent with limit 0
h
limit theorems
=> (C OMN: (dh + ah)nelN is convergent with limit a4 []
Example: 3 convergent?
sequence (C )hequve\n by C, = I n+l - n limit?
:(lh_?'_‘ ) v)+‘| + V)>
v)+4 + hn
A B 4 ¢ 1
[Fed +n g a0 T

= (0L, éi\n— for all nelN > h[_;vzc O

Sandwich
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[ ]
\ ]
) L

interval: (o, b] ::ixeﬁ{ | a< x < Lk
[at]:=3xeR | o< x <b]
[a,oo)::{xelR | o < X }
(*mlt):{xeﬁ{ l X <L?§

( =
@ X < Tt

, > ¢ } ¢ >
a lower bound m J\_ an upper bound rR
for M M max M for M

!

Definition:  For a subset M < [R: Le R is called an upper bound for M if

YxeM: x<b

o € R is called a lower bound for M if VXC_ M o X=a

1f b is an upper bound for M and be& M, then b is called a maximal element of M.

1f 0 is a lower bound for M and & € M, then o is called a minimal element of M.
min™M

Examg\e: ° M = [113_.\ , Mmax M =3 minM = 1

*M=(1,3) , maxM, minM do not exist ~> Su\oM . ind M

/S\AFM

lowest upper bound ~

=£}'1' 1 I N
S-¢ | l e

3 ¢ S R

= T

Definition:  For a subset M S [R: selR is called supremum of M if

. VXG M: x<5 (upper bound for M)

) \V/€>O AXeM:s5-¢ <X (S—¢£is no upper bound for M)
Then write: SU\PM = 5 or S\ArM = 00 if M is not bounded from above

or Sup@ T -

For a subset M C [R: IG R is called infimum of M if
. VXG M: x> A4 (lower bound for M)

. \V,€>O A%XeM: f+e >X ({+¢is no lower bound for M)

Then write: LV\S M:=/[ or  §M = ~00 if Mis not bounded from below

or (‘,V\}Q{:'_‘:oa
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(O\h)ngm COV\VGYQGW\' (there is a limit o = [iw; A, )

n—>o00
law-an| <€
Different idea: | | | || |A|AT||W N
l I I AL >
A, o, Q, Ay --- [R
Definition:  1f \/g 0O 3 Ne IN Ynm=N : \ A, - O\W,l < €

then (O\h)hGIN is called a Cauchy sequence,

Important fact: For a sequence of real numbers:
Completeness axiom (C)
Cauch% seguence <:> COV\VCVQ@V\‘\' seguence

start Learning Real — Part 2

Dedekind completeness: 1f M < IR is bounded from above, then S\AP Me& R (exists)

1¥f M<S R is bounded from below, then Lln}M € IR (exists)

Prooft: M
. ) - . >
Q1 C1 L1 R
1
€ s T(a\ﬁm
Two cases: (1) C, is an upper bound for M Ll:: C, ; 6= a,

(2) ¢, is not an upper bound for M: dxeM: x > C,
A, =X, Ll==L1

C,i= %(a\h-l- Ln)

Two cases: (1) C, is an upper bound for M N T C,, G :=a

n+4 »

(2) ¢, is not an upper bound for M : erM! X>C,
a,,H-.—_-xl L,M::Lh

n-1

én—O\nl é('L) “31“0\1|

For m> n : |Lh—l:,,.,|§_ 7

gets arbitrarily small

— (L“vhelN Is a Cauchy seguence

— (L“)helN is a convergent sequence with limit SuFM

Important application:  If (0\,,7"€IN is monotonically decreasing <O\h+4 < a, for all h>

and bounded from below (ﬂ,e e i‘*"'ghem has a lower bound}l

then: (a")nem is convergent,
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Fact: 1f (O\")nem is monotonically increasing <a\h+4 > a, for all h>

and bounded from above (’rhe ced zo\'g has an upper boumol>
then: (O\Dhem is convergent,

(Monotone convergence criterion)

Example:  The sequence (O\thm given by A, = (4 - —11-) is convergent,

Proof: (1) Monotonicity: Qg <1 mon, decreasing >
Q,, 1 mon,. increasing
h+1
1 N+ : N+
Qg | (4+h_+1) _ /l+'1_>_ (4+h_+1 n_+1"("*1)
A, - 1 n — n 1 N +1 (’1 + -
(1+%) (1+%) (4% )t
h+1 h+4
y h(h+4)+—h +1 -1 1
= Ql " ?) = Ql 4 %) /] - - y
(e +n + 4 n+ln+d

(h+1)"
(’I %) (1 ACORG (vlm))

Bernoulli's ineguality:
For kelN and x> -1

('1+><)k > {+kx

vV

A

(2) Bounded from above: . = (4 +Lh) _ k=o(:> ’lh_k (_4;)\‘
h n h-4 4
ARSI WEROEAWIG
vy, W
=1+1 + Z(D(i)k <21 -1 <3
=2

We have: (k)( ) - k)‘ " (4“\ — :mmﬂ (n-k+1) i_ éi

N/« n h k‘ k)
<1 |
. 1 1 1 ; z“;(4 N 1
= k-0 k- ko \k-1 K ‘/l‘?
fact
:> The seguence (a“)uem is convergent,
Monotone convergence
criterio
' [um (1 + —) Euler's number

h—> 00
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l | I . |IIH| N

| | L L P
“1 G aJ o\(‘ ® - R
Qa

o o O\n_.,

Definition:  Let (hk)kem be a sequence of natural numbers that is strictly monotonically increasing,

then (O\thQN is called a subsequence of (Q‘")hGIN . (‘v’ ke N : n,, > V’k)

h =1 2 3 4 (3 ( 7 3 ..
. . 1 I I
Examp\e. QahwhelN glven b% A, = Y / (/I, 7/’ 3 ¢+ ¢ s L 3 /
— i 1 1 1 1
Bdew = (ap) = G % Frde s )

Fact: (O\hwnem convergent with giy:o A, = &

:> every subseguence (O\‘"Dkem is convergent %Clm O\hk - A

k=00

h
Example:  (a,) .,  given by Q= 1) 0 0 >
— -1 1

subsequence:  (Qn)ey = (az.k)kem = (L1111, imit

R

accumulation values

subseguence: (Q‘"DKQN = (az_kH)kelN = (_— 1,-1, -1 ’ ) limit -1

Definition: 0€ N is called an accumulation value of Qah)hem

it fhere is a subsequence (Q“DKQN with [(:yn a, = &

k—=>o00 k

(cluster point, accumulation point,
limit point, partial limit,..)

Show:

o€ R is an accumulation value of Q‘M)hem (o\_g , A+E )
/4

> Ye>0 @ The €-neighbourhood of o contains infinitely many

sequence members of QahwhEIN
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Bolzano—Weierstrass theorem

(O\hﬁhem bounded :> (O\hwnem has an accumulation value

(has a convergent subsequence)

IHI L 11 IIHI | N
| T T T I 7
lower bound upper bound R

Proof:

It infinitely many sequence members in it: Choose left—hand interval

Otherwise: Choose right—hand interval

Vv
| repeat
New interval: |I|||| |‘| I ]

c, )

et [ d] 5o d] 5 o 4] Dl 4] >
And: d,—C, :ji(do—co) / dl-—C.L —_—12:(0\1—C1) :%(do—co),...

decy = Aa(d-c) === g

= (Cu)..gm / (akv-)hGIN

We know: (Ch)hem mon, increasing and bounded %
convergent

(Ah)h€|N mon, decreasing and bounded

By limit theorems: O = Za’m (dh_cn) = !a_: d, - Z.'m C.

h=> 00 h-> 0o

Define a subsegquence (O\“Dkqw by choosing &, € \-_Ck, o\k—_l
<

::> C,

Sandwich theorem

= (O\,,Dkw is convergent

a, < 4,
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Examp\e: Qah)helN ineV\ b% ah - N

oooooooooooooen{

jiv\n 4y = X :(=> divergent to oo : & VC>O INEN Vn=N : 0, >G

h - oo

Lim a,=-00 &> divergent to ~o0 1 ¢=> VYC<0 INEN VnzN: a,<G

h—> oo
(O\h)nem has the improper accumulation value oo :&=> (Qhwhem is not bounded trom above

(O\hwnem has the improper accumulation value -co : &> (Qh)hGIN is not bounded from below

and none, one or two

A given seguence (O\hﬁ could have many accumulation values:

neEN improper accumulation values
< O o - o > @
oo %

Definition:  Let (Qhwhem be a sequence of real numbers, An element ae R Z"Oo,oa}

is called: o limiistreriorior (O\h)nem it o is The largest

(improper) accumulation value of (o),

Write: o = /'ulmm A,
h—>o00

e limit inferior of Qahwhem if o is the smallest
(improper) accumulation value of (a.),,

Write: o = /Lmin§ A,

Suoiak kZ‘IXA graph h—> oo

Suoiak k23’§ . y

Supzak kzjg = ?

S“Diak kZ’H} . ; : . ® ° o ) O
; i — l — | : — | : | | >
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Let (O\hwhem be a sequence of real numbers.

> [hlf_\;g:\F An /Lmoih§ a, € R U {ioo} = [—OQ , oo]

h—>

Example: " -
xample Q@ﬂhem — ((_'D.n)nem = (—4,2,—3,4, 5/...>
[LVVISM ah p— OO
h—>o00
[m mg A, = -
h—>00
Properfies: (a) (Q"'thIN is convergent <—> [hy_‘;” P = [ - m P ¢ ii'oo}
0o h—> o0
(b) (O\ﬂhem i olivevqulJf 1o (/hv_:m Ay, [wn LHS A, =
0o h—>00

(c) (O\h)hem is divergent to -0 <:> ([ Lim Un;d\ /m Sup = -

h=>00 h—>o00

(d)  For (O\hwnem , (ljh)hem , We have:

/mer(o\h + Lh> < [mm a, T /mer L:,,

h—>o00 "‘_>°° h=>00 (only if the right—hand
side is defined)
1f a,,6,20" /msu\ (a\h : Lh> < [msu\ A, /mm 0O — 0a not defined
h_>°° h_>°° h_>°° O 00 not defined
/Lmi_ng(a\h + Lh > [‘-Wl Un_-g- o, T [MLH§LJ
I‘F o k 20 /Lm Ln&(ah Lh Z / Lim LVIS 0\ / LIm L"I} L)
h—=> oo h—>o00 h—>o00

Example: (O\hﬁhem = (4,-4 A1

(b ey = (0,2,0,2,0,2,0,1, )
(O\h+Lh)h€|N = (1/ ,11 1/ )

/l_[umsu(a+L><[m5uo\+[msu\

h—=> oo h>o0 | I = 1+27 =3
1= finis(ans tn) 2 Linef o + Linish, =140 =1

h—>co h—> oo

Examp\e: (Q"‘)hem = (/I, 0 I 1 / 0, /I, 0 p /I, 0, >
(b)yey = (0,2,0,2,0,2,0,2,..)

(O\”'Lh>h€|N = (O, 0,0,0,0,0,0,0, )

0 = [umsu. (a ¢ L> < /mm [VVISU\ =12

I
NS
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For €>0: (x—¢, x4 £) =: BE(X) € - neighbourhood of X
M < [R is called a neighbourhood of X  if there is € >0
such that Mo :PDE(X)
€>0
Example: E-Z, 2] is a neighbourhood of O [{ OW—)J >
E—Z, 2:\ is a neighbourhood of [ - 1 }

E‘Z, 2] is not a neighbourhood of 71 [ L}-;%

Definition:

M < R is called open (in R) if, for all xe M, Mis a neighbourhood of X,

VxeM Jeso M2 R.(®

M 8.
4 A @’:’ A ( Y ([ )
\ / U

< < 7 = R

A < [R is called closed (in R ) if AC = R\A is open.

Example: o ¢ , R are both open and closed.

5 EZ/ Z:\ is closed but not open.
. (_ZI 2_) is open but not closed.

8 (-ZI Z;\ is neither open nor closed.,

Fact: A< R is closed <{=> For all convergent sequences Qo‘n)hem with
a,e A for all neN
we have: ..K;""m“" € A
A=(0,1
Example: ( I :\ éo-b—ﬂ--g >
0 (3
- (1
Take (0n), o = (r)hem'
Then: né”’mo\" =0 & (O , ?.___\
Definition:

A < R is called compact if for all sequences Qo‘")h€|N with

O\nG_A for all heN | there is a convergent subsequence Q“"Okem
Wl‘\—h kﬁ‘;"\manke A .
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Compact set (sequentially compact set):

A< R
e — > R
Any sequence Qay,)thN < A has an accumulation value ae A .

Example: (a) ¢ is compact,

(b) iS} is compacT,

(¢) R is not compact. (an>h€|N - (h)hQN has no accumulation value ae[R
(d) l—_C,o\—_\ , CSA, compact set,

Let Q“")nem < EC" 0\—_\ :> QG")helN is bounded

Bolzano—Weierstrass
theorem

_> QahthIN has an accumulation value O\E(R

ECIA] closed
:> accumulation value actually satisfies ae EC/ 0\]

Heine—Borel theorem For A - [R , we have:

A is compact (&> A is bounded and closed

Proof: (<:) Do the same as before with Bolzano—Weierstrass theorem.

(::>> Assume A is compacT,

Let (O\hwnem < Abe a convergent sequence with limit  &ec [R.

A is compact
_> (O\hwnem has an accumulation value ae A .

only one acc, value

_> &= ac A :> A is closed.

Assume A is not bounded.

:> There is a sequence QOKVJMN < A with

O\,,,‘> n for alhe N.

_> no accumulation value :> A is not compact,
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Series:  “infinite sum*, special sequence
0Q
A, + G, + 05 + O+ = kg;o\k
= 4

K
Example:  sequence (o‘k)kem = ((- 1) >ke|N

Definition:

Let

40 ¢ 0 0

(—’] + 1) +((—1)//+ '])+(( 1)//+ '1>+((—1)/I+

0 0 0

'1>+ -1 + - 0

0

4 (14 (—41)%(1 - (f’ﬂ)+ (1 + (:’4>)+(4 +/’(—4>)+ =

(O\k)kGIN be a sequence, The sequence

n
S“f: _;_;O\k
k=4

is called a series,

1f

(S,,)nem is convergent, we wrife:

f;‘o\k = fim s, = fim Zo‘k

n—>0a N—=>0a | -4

Example from above: (Z(-)l)k)nelN = ("], 0 1—1/ 0 ,“1/ 0 ,“1 >

(5».3,,6 N @iven by

I o o

not convergent:

Another example: (Z (’l)k> = </\, 2,3 , é(‘/ > divergent to o
k=4 m€|N
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oo n

a, is the sequence of partial sums zo"‘
k=1 k=14

Serles:

oQ
Example: geomelric series Z Olk / CIG R
k=0
=k
We show: Zq convergent  {=> lcl | < 1

k=0

k

Question: §, = ZU] =7

T 1 e

1

; 1= o™
Sh:kzt;,qk = —CI

1°9
(S"')helN convergent <:> (ﬂn> N convergent to 0 <:> l‘] l <

= | | g
For |c||< /l : Zol = liw- S, = — geometric series
k=0 n—>0a 1_1
Example: Harmonic series
Sk U U I B - o
é =TT YT + = o0 (divergent to infinity)
& 1
Proof: Sh = Z_k (sequence is monotonically increasing)
k=1

Show that (S"‘)helN is not bounded from above.

B

Szm 54 + (SL-S1> + (54‘ SL) + (53 - 5-4) + - (52m - Szm-1)

m— o0

m
Se 53l -5 > st 773 o
J:

B

because: 99

29
o - il E R
520 520-1 - Z k > Z 2.‘5 = 2 . Z’ iy
k=204 k=294
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oQ
Series: a, sequence of partial sums
k=1
(o8] o0
Properties: 1If Zo‘k and ZLk are convergent, A€ R, then:
k=1 k=1

(a) (o\k + l;k> is also convergent

k=1
and _H’]e \”Y“‘t iS: Z(ak + Ek) = i o\k + iLk
k=1 k=1 k=14
(b) Z(')O\k) is also convergent
k=
and the limit is: Z('/\O\k) = N\ i A,
k=‘| k:1

Cavehy criteriop: kz; A is convergent <—> VQ>O INelN Yh=m2N :
Y

n
D | < €
k=m
- p h completeness
yooTt: . — .
51,, = ;; Ay . (_Sn >h€ﬂ\| IS oonvevqen’f <:> (S"’)hen\] is a Cauchy seguence

(= Veso INeN Vi,m=N: |s5- s.l<e

&S Veso INeN VnzmaN : |Sh = ‘le <¢g

o N+2 [4+CG1) + 1]
Example: Z (—1)k Calculate: Z(-’l i = = 1
5 ! |~1+1 + (0

oQ
Important fact: Zo‘k is convergent :> (O\k>kem convergent with [ém a, =0
k=1

k=>o00
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Harmonic series: n : A
Sn = Z—k
k=1
1
divergent 1
T[4
3 % ~
7
Leibniz criterion: /N

g, = ) +
+_ n k=4(1) ”
+T|TIT"T|_|V_I_!—I\

7

convergent

Theorem: (Alternating series test, Leibniz criterion, Leibniz's test)

Let (O\k)kem be convergent with zém o, = O and monotonically decreasing.

k=00

& k
Then: Z(- 1) &, is convergent,
k=1

/N

n k
Proof: S, = ;(— 1) a,

= a, >0 T

e
7
Sites = S5y = = a, P < 0 (monotonically decreasing)
55043 = 5501 = %y T % =0 (monotonically increasing)
SZ+1—SZ :—QZ+1éO :> %__S'Z+1__SZ$.SZ
(bounded)
/\ (SZ ) (mon, decreasing + bounded)
~
. >
o o e o o o ' o o
. [ (SZ+1_S2>:

(SZ +'1.) (mon, decreasing + bounded) | )
im \ — O\Z e O

St= [“ﬂ Sz 1 — Lm SZ :> ﬁim S, = S

(convergent!)
Nn—> oo

Examg\e:

0o k
Z(—O o
——=  convergent by Leibniz criterion
k=d {K
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o0 o
Z a, is called absolutely convergent if Z|0\k| is convergent,
k=4 k=14

oQ

abs, convergent => convergent: Z'o‘kl is convergent =>

k=1

h
VC_>O 3N€|I\J \VlHZ\mZN : kz; |0\k| < ¢ (Cauchy criterion)
=m

=> Veso -3NelN VYnzm=N:

(Cauchy criterion) o

= Z a, is convergent
k=1

Ay
k=m

h
< kZHO\kl < €

oQ
Counterexample: Z(— 1) ik is convergent but not absolutely convergent
k=1

(Leibniz criterion) (harmonic series)

oQ
Majorant criterion Let Z a, be a series,
k=1

ocQ
1f fhere is n,eN and a convergent series ZL’k with [)ké 0
k=1

oQ

and with la,| < L’k for all k >n,, then ais abs, convergent,

k=1

o0
Proot: Apply Cauchy criterion to Z b, :
k=1

V€>O HNého VY =m=N : Zlo\kl < ZLk =
k=m

k=m

h

Pl

k=m

< &

oQ
Minorant criterion Let Z a, be a series with a, = 0.
k=4

1f there is helN and a divergent series Z by with b >0
— k=1

3

and with a, > Lk for all k>n,, then Z a, is divergent,
k=1

: = 1
Example: ij I.T—? is divergent because W < k S = =2 for all k=>4

1
Kk
o,

and Z T is divergent
k=4
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o
Z a, absolutely convergent?
k=1

oQ
There is a convergent majorant :> Z Ay is abs, convergent:
k=1

We know the geomelric series:!

é O]k convergent <:> [cl | < 1

Fact: 1If there is N, N and C,ale Rwith |<1|< 1 such that |a,] gc.ﬂk for all Kk >n,

oQ

Then .
a, is abs, convergent:

k=1

Rafio fest: 1f there is Nn,CIN and 9¢€ l-_O,'D such that

Oy
aF 0 and uill 9 9 for all K > n,
Ay T J
oQ
then Ay is abs, convergent:
k=1 S
/|k4./1
. inductively k+1-n, k+1 | a
Proot: |Qk+1 < 5]'|0\k| < C]'ﬂ'|0\k-4| < .- §‘1+ a, :<1 :n
ﬂ o
Exampl el A "o 1
: + !
£ ZF convergent? k+4 — (k+1). = = 1 for all K> .
k=1 M L k+1 E o
\_\A k! K V‘C’“ N,
Yes! (by ratio fest) (kef)! = (ke t)k!
Warning: Ak :
rarmng- - < / is not enough
k

Root test:  If there is hOG\N and 9¢€ [0,17 such That

a|] < < for all Kk >n,
oQ

Then Ay is abs, convergent:
k=4

Proof: W < 9 &> |a] L c,k

Examp\e' = 3 . 2k’ 1 b 9
—_— Z (fu_k' convergent? k ( 3 > _ ( 3 > — < —
k=1 {2+ - \{z=x/ =~ 2 10

Yes, by root test: * 2+Kk + k for all K >8

oQ
Remember: Zim:up h’IO‘KII < /] :—_> kz;o\k Is abs. convevqen’n
1

k—> oQ -
Zikw. sup q"’ | o | > :> ij Ay is divergent:

Attention: For the ratio tfest, this is different:

oQ
Zim:u ‘O\kH < / :> Z ay is abs, convergent:
k== oa Ay k=1
oQ
Ziw. inf ‘O\kH > :> Z a, is divergent:
k—= oo ak k=1

(Remember: the ratio fest is weaker than the root test, in general)
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Zak R P O (n is even)
k=4 L,—x LLX\
= O, + 0 + Ogt0, + - + A, F 8, ,
Reordering does not change a finite sum:
0o . K N ¢ N ¥ X L -y
Example: Z(‘O - 1 4 + 4+ + A+ + ]+ PR
e is not convergent
¢ but has two accumulation values 0 , 1
aveovdevinq:1+1+ + 1+ + 1+ + 1+ t o

e is not convergent

o but has two accumulation values 1, L

€ \ k+4
xample kz;( ,D ik convergent by the Leibniz criterion
y

S 1), 1 1 1 o @
D) () L (D) e =T
1 ( L 3 S 4 7
a veordering = 1,1 (__'1_) W ( > +( 1>
17 3 z = 7 TG )t
— 3 : .
- 7 ¢ different limits:

Definition:

oQ
Let Z A, be a series and T: N — N be a bijective map.
k=4

o0 oQ
Then Z Ay 1 called a reordering of Z Ay .
k=1 =

oQ
Theorem: If Zo\k
k=14

is absolutely convergent, then:
(for ang T: N—> N bijeo’rive)

oQ oQ
Z Ay is also abs, convergent and ; Aty = Z Ay
k=1 S

Proof: Let €>0.

n
Cauchy criterion :> 3N1€|N thvth1: kz;lo\kl < €
=m

/;A_\ h N,-1 N,-1 h
St o] = [ A 2o 2 2o
k=1 k=1 k=1 k=1 =
N-1 N,-1 h
< | A- ;;ak + l;;ak— go‘w(k) < /¢




BECOME A MEMBER

ON STEADY L\ v Y 4

The Bright Side of P
Mathematics

Real Analysis — Part 22

= - How to multiply? 00
> % | by > > Ci
k:(] k=0 k=0

For finite sums: (ao + 0, + O\.L>' (Lo + b, + BJ

—
—

0, b + 0,by + aby + agby + ab, + b, + b, +0a,b, +ab,

(QO l,o)+(ail>° + O\ol’4) +(azl,° + o,b, + aol;3+(alla1 + a,b,) +(all>,_>

Lo% “— — T r— —~——— —_— ——
L Cii:::::> 0 1 1 3 4

o0 oQ
Cauchy product: For two series Z A, ZLk "rhe series
k=0 k=0

) k
Z Cy with Cy :Zo‘l Lk-j( is called the Cauchy product.
k=0 I=0

o oQ
Theorem:  If Z Ay is absolutely convergent and b, convergent, then
k=0 k=
o0 ‘ oQ o0 o0
Cauchy product Z C, is abs. convergent and Z Cy = Z 0\k>-<ZLk>
k=a k=a k=0 k=0
Example: ex()(x):: e for xe R (abs. convergent by the ratio test)
k:a .

Apply Cauchy product for 6XF(X) and 8XF(>’> 3

binomial coefficient:

_kx[_LH_4k’<I- kY k!
- /N k
binomial theorém — % (x + )/)
(?,XF(X-P}/) — é%(x.‘.}/)k — g;ck :(éo\k)(kzza;lm :exr(x).cxp(y)

fundamental

_____> 8XF(X+>/) p— c?,xf?(x)'éxf’()’) multiplicative identity
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Function: 5\; [ — R (T_ - R)

Later: continuous functions 5\= [R —> R

/N

/ continuous

not continuous

(

i N
X 7

Idea: small errors on x—axis ~~> small errors on y—axis

Definition: 5\: I — [R s called a bounded function if

25("7 \"QI} = RC\V\(S-) - §[I] is a bounded set in R
(& suplsial< o)

/N

NIV YAR

Sequence of functions: A
sequence:
A (51151.1§31.¥‘1)5:S/-“>
\ ~, with sequence members:
L e
X

;] —>

For any fixed X€1, 5: R

we get an ordinary sequence of real numbers: 5\: I — R
(A

(58,56, L6, 5, £6),..) ; T—>R
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sequence of functions:
fh: I — rR

(51/51-, :§9:§Sl'-->

(51 £ T2, 5“, fs, ) is poinfwisely convergent to a function

Pointwise convergence:

‘)(:I —> R if for all §eT :

(5, 560, L), 5,8, 545),...)

is convergent to J(('i)

[VXQI Veso INelN VnxN:

5. - 53] < a]

—Examp\e: 5:h: [0' 1-_| B rK ! En(x) - %X o 1A_/§1§
For )A('e[o,'ﬂ: fh(i): 17'>‘<'+1 % 1 14 ’lf .
a >

Filot] — R, 56=1

—> (pointwise) limit function

hx(1-nx) , xelo,%

Example: fh: [0,'1] —> R , .&(’O =
0 / Xé(%,ﬂ

h

| i !
- 1

V

For x = 0 : = £ ||
fh(x) 0 or all nelN z —> (pointwise) limit function
F 0 = 1—
or X > fh(x) O forall n> < 52: [0'1'] > R ( =0

Example: A A

pointwise
N>
limit °

~

V

/
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(§1 , 5. . 5:3: 5} ,fs ; ) is pointwisely convergent to JC; I — R

VxeI Veso INeN VYnaN:

&) -] < ¢

Definition: (&1 I S U YR o > is uniformly convergent to JC: I — R if

VYeso ANeN Yn=N V)’ZQI

5 - < ¢
¥

e

>
Distance for functions: Y\ 9 5 I — R
W} g: I =R
>

"5—5 "N: i‘GAIP |§(x) —~ j(x)|

supremum norm of 5—3

. n
Uniform convergence means: |5h ~ J(” 7500
0
Example: A A
1 -
pointwise
- limit =
~ ~
- =
|5~ 5l =1 forall n h
Result pointwise convergence 7§ uniform convergence

=
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/N
_ ";(xoy +E
3(w) -~ h >
JRe L~ 7 xo(:
Definition: ——/-—‘—‘-‘-“l*'—‘—‘—'—“‘-%

Let \§'- I_>R, Xl . It there is CGR and

all sequences (X")nelN C I\ixfg with ﬁcm X, = X,

h-=>00

we have (5(&,)) N is also convergent with fl‘.h JC(X.,) =
he

h-=>>00

A Then we write [im 1) =
X=X,
xi?,”c(x) 0/\/ and [im §(x) =C it X,< x, for all
‘)C()(,)- . XA X,
im $(%)
| __/i = and X[\jm §(x) =C it X, > x, for all
Xo Xo

Example: (a) 5()(): io , X#0
T

lon$) = 0 £ 1 = §0)

X=>0

\

C )

he IN

he IN

B 1) = X" % ai X" s apx v, (§:R>R)

For XOG_R take (Xn) with ﬁtw X, = Xg

neN h->00

M-

g(Xn) —_ (l,h X:n + a'h_1 Xh + e 4 41'X:‘ + Qo

m-1 ]

P m
= > O, X+ G X o Gy X, Ao =

(limit theorems)

= [ 500 = 500 \ A\/\ S
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Definition: Let 5: [ — R be a function with L <R,

§ s called continuous at xe1 if

/N
[i'”' 5(’0 - §(xo) S bF----Y
X=X, ! ~N
X >
or if X, is isolated in 1, A
/ \
There is no sequence (><")heIN < T\jx%t with g_:,; X, = X, S /’
>
xo

Definition:  Let {: [ — R be a function with I <R,

{ is called continuous (on I) if § is continuous at x, for all xe1.

To remember:  Continuity implies: fi g(X,,) = \g([im X,) (“C fimx,€T

h> o h=>o0a e

A

Examples: (a) 5: ] - R constant

continuous here

® FR—=R  §(x A

"
(\&—ﬂ
— (-
< X
v A
o O
——

>

not continuous here: [g,,, £(x) does no t exist
X=X,

) F:R—=R  §(x)= io . X#0

\ fon S0 = 0 £ 1 = §(0)

X0

not continuous here
(d) 5: R— R polynomial

m m-1

(x) = G X+ G X 4+ GX +

We have: Xé.,;f(x) :/\\ §(%)  for all x,e1. \jl\//\\ S

limit theorem for sequences

polynomial
(e) f‘ LI—=R yational function F(@
§ J[(x) = continuous on L
I:={xeR| q() #of B 1O
(f) jT[R—>R absolute value _ ] -x ., X<0 W
= x= 7 /.,
%ivn ;(X) = /I:IM §(xv) = [ivw -X,) = 0
Firg 700 = fim S00) = fim (0 = [ 500 = )
x[ha §x = h[ilm §(x) = h/e.m(x,,) =0 ’

x /N
(@) §:R—R JC(X):iO ; B

1 , X € @ ......... 000 0000 001N E0s0De8 k000 0t e ot 000 mesas o

N
7

( Qis dense in R by construction) -
%im {(x) does not exist

X=X,
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Continuity: § is called continuous at x.e1 if
fim 560 = §(x)
X=X,
Theorem: Let 5: [ = R be a function with [ <R, i\
e
For X,&1, we have: 1
= pm =
5 is confinuous at x €1 :

<>

Veso 36>0 VxeI: |xxl<§ => |§0-3x)<e
/N
o e
;s N _/t_.i_\ N
xo, > \;(’0 =
Proof: (=>)  Assume des0 Y§>0 dxel: |x-x|<§ A ‘Jc(x)—gc(xo)zs

Take 1; , nelN

=> For all ne N , we find X, € I\‘tx%

with |X,,— Xo |< e and |§(Xv) ~ JC(xa)l > = f){usxov:loon inuous

((:) Choose seguence (Xh)hemg I\{xo} with limit  X,. Let €>0. Take §>0.

(from assumption)

There is NEIN such that for all W=N we have |X,—x,|< §
Also (by assumption) we have ‘ X )— § is continuous
y( h) xs:(xo) < E— ’ :> at X,E 1
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N\
;(xo) ' //\//\/
— Ly“ >
Proposition: )C: I =R, 3: [ = R continuous at X1, /I\/\/§+J
0
Then §+3 : T — R continuous at x,e L, Aé& ~
| >

f > 4 [ - R continuous at x,eT .

1f in addition j(X) # O , then i is confinuous at x,el .

Composition of functions: /_\“\‘/—\\

Proposition: 5:[—>R,3:)—>[R , TJECR, with j[J]C_:_I,

3 confinuous at x,,eJ

=> fog:J—> R continuous at x,e J
5 continuous at 3(&)5 I } g J -

t is continuos at (X,)
and [&m \7(&.) :J(x,,)

Lin(§o9)(x) = fim 5(90)) = § (fom 9(x)
0739 (L)) =(s290

9 is contfinuous at x,
h=> 0o

Proof: Choose segquence (Xh)hemc_: J\{x,,} with limit X%, .
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5

compact => compact

Theorem: | < R compact, )Ci T— R continuous.

/ Heine—Borel /\
Then: ﬂ:ﬂ <R s compact (= bounded + closed)

and there are X, X €T  with §T

\

Sx*) = Supiaf(ﬂ | xe T} -
5(x-):¢h5£5(x) | xeT}

Ju
V

Proof: Compact means: every sequence has a convergent subsequence,

Let (thnem < 5[1] be a sequence,

For each vy, there is x,¢ I with jf(xh) = Y. = New sequence (xh)hem c T

T compact
—> TThere is a subseguence (X"Okem That is convergent: X:= gi;':xn,‘é T
fir o, = L 00 = S 00 = 500 =2y

§ continuous

So (Y"Dkem is convergent with limit Y€ ﬂ:ﬂ => ﬂ:l] compact
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(§1/§1., yﬂ:.?‘t:f:,---)

pointwise convergence:

uniform convergence:

Theorem: ] C R, §,,3 T —> R continuous (for all neN) , and

(§">h€IN uniformly converges to 3;; I—R.

Then: } is also continuous.

)

PVOO'F: Le‘f > O . Le’f X°€ I . Se‘f: ¢ = 33 (see end of the proof)

AN

Uniform convergence: VQ}> 0 3N €|N VVI >N V)’ZQI . |§”(5~<) _ }(')‘() | < E)

GEEE—
ontinuity of :
Continuity of S We find §>0 with:

A Sy

Ctj'\\_ - Ver: |X—><,, |< S :> ‘}N(X)_J[N(xo)

x~§>0

<¢g

Hence: ‘ 5()()_ J((xo)

= [500 - 560+ £60 5,00 +509- 5
< |30 - £ + |56 -5

——V— N —
<¢' <e < e

<3'£.‘ = ¢

Conclusion: We find $>0 with: VxeT: |X—x,,|< § —> ‘Jc(x)—gc(xo) <€
Xo arbifrary

=> [} is continuous at X, => § is confinuous [
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JC: /;\: —> R continuous A
[a,t] S rh /b\_
y.
;(ﬁ) (1 ]

Ly —
o b
Infermediate value theorem: Let §: [a,l] —>R be continuous and
ye 5, §0]  or ye L5, )] .
Then there is X € [a,b] with  f(X) = Y.
Corollary: ; [[a,L:I] is also an inferval,
Proot of the intermediate value theorem: A J
Define new function: ’T
- J
‘{j‘— ')(— y ! l ~
eSO
. -9 if 9@>0 ¢
{:=
g if 3(0‘)50
Then § is confinuous, ?: O, and g(ﬁ) <0 , S:Uv) > 0.
r | Check g(c):
I_ | J Repeat f S'.,(c) > 0 - l,1 = C
) C b 1f §(C)é O : a;:=cC

Wet get two Cauchy sequences (O\thm , (L,,,)MIN and

= fim o, = fim L, € [_A,l:_|

\(l/
X3

J

g

We know:  Jim §@) <0 BN §(fm a)= 0 N f(n=<0
f b fe)20 77 f(fmi)20 T i 20
y“ Cor r. nr
j@ =) =0 =3 =0 = )=y
T\ $G5-y

O
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@ Exponential function &xda: R — R  defined by

€ := de(ﬂ Euler's number

\ n
\ %dw (1 + ih) =2.118...

h 0o

We have shown: (?,XF(X+>/) = 5XF(X)"ZXF(>’)

For example: axF(Z) = cxr (1+ 1) = &Xr(ﬂ y 6Xf(ﬂ = GZ

In general: 8Xr(x) _ for xelR

More properties: -« exr is a continuous function
y 8xF is strictly monotonically increasing
( X<y = exp(X)< exr(y))
' [t'vn 6XF(X) = oo , [fm exF(X) =0

X=>o0a X—> -~0q

. Cx'g; R — (0,00) is bijective

@ Logarithm function ﬂoj : (0,003 —— R defined by the inverse of CX'O‘- R — (O/°°>

/N “xg = ﬂoj is a continuous function

lo
J . '{DJ is strictly monotonically
_’/ /> Increasing

/ - 103 (x-y) = foj () +1c19 y)

® Polynomials (R — R f(x) = 3,3 X 4 Qi X 4o+ 0%+ Q,
¥

0 polynomial has degree m

continuous
@ Power series 5: D— R / J((x) = Z a-x" , D= {xg R ‘ a,-x* comvevqe%
k=0 k=0

l_s

{ A
!IOIE—!IOI «l-ll-.)

O\k' Xk

Example: (4,) = (0, % 0, -1?! , 0, 13!, 0,-

(& |

M]s

gives power series S'ih(x) s =

=
I

0

o0
Theorem: For a power series Z ak-xk , there is a maximal € [0,00) U 5_00?5
k=0
1 _
2 — C . : k p— 1_ -
with ( \’,r‘) < D. 11 holds: ['kg-;ur |l " (‘1’_= 0>
R power series is confinuous on this interval (Caucm—ﬁadamaiool)



BECOME A MEMBER

ON STEADY L\ v Y 4

The Bright Side of P
Mathematics

Real Analysis — Part 34

Differentiability (linearisation) smoothness
§:R—R
N \/ N
. 7

slope at point X, ?

appvoxima’fef locally with a linear function?

(affine) linear function: q: R—>R | \9()() = a¢X + 4, = m-(X-x,) +C
(linear polynomial) A /)‘ constant
/r\'/ s\ope C= J(xo\
X)— xo)
= - > = m = j(x_i( R # X

Linear approximafion: §: IR —>R ’ X, € R

Ui secant ‘S:R%R' 5() = m-(t-%x,) + C

/ £60; 500
/N s(t) = f(xz(-_gx&xa( )+ S0

Xy X >

\\_/ tangent Y R—R
/ Y( ): [;m§(x)-§(x0

X>%, X=X

N
>

( —xn)+ S(xo)

% Z we want it o exist
\ X) -
slope at Ko * 5 (Xo):: [[\m 569-50 =X _(A_;E_(x) differential quotient/ derivative
X>x, X=X d % 0

Definition: T < R interval with more than one point
or L < R open set | 5-‘5__[%&, X,€ L.
We call 5: differentiable at X, if there is a function A; %, I—R

with g(x) = 5()(0) + (x— xo)'A;t,xo(x) for all x€ T

and A5 . is confinuous at X, .



BECOME A MEMBER

ON STEADY

The Bright Side of ¢ .
Mathematics

Real Analysis — Part 35

§ differentiable at X, <:> [{mf(X)-S(XJ exists (Ca\\ i1 JC\(XO)>

X>x, X~ %

<:> AD‘.XO(X) = }(xl—ifxd for X # X,

can be extended to a function that is continuous at X,

A}.Xo: I%R with [n'\m A},Xo(x) = A‘;'xo(xo)

X=> X,

<:> There is Aa‘,x.,: T—>R  with
5()() = 5()(0) + (x - x,) -Aj.xo(x) for all x€ T

and AJt %, i continuous at X, .

\ _}<:> There is I I%R and number €ER with
A x( ) = S(x) + ) 5
) = Se) + mlx 560 = $x) + (x- %) U+ (x= %) T(x) for all x€ T

and 7 is continuous at X, with T(x,) =0

Proposifion: § differentiable at X, =>  § confinvous at X,
Proof: There is As'xo: LT —>1[R which is continuous at X, .
Lo 500 = fom( 50 + (x- %)+ Ay, ()
= 500+ fon (-m) - fm A 00 = 50 O

X> X,

Examples:  (a) linear polynomial: §: R%R' §(X7 = Ay X + 4,
5\(&,) = [.’m‘ﬂﬂ_ﬂm = Zl'\m 0\1-X+0\°—(0\1-X0+ 0\0) - Z;,m O\ff)"/xox - a
X>%, X~ %X X3 X, X=X, X> X, Mo — M
(b) absolute value § : R%ﬂ{' Jc(x) — |x| ' X, =0 \I\/
/ £69-5(0 . X E
tm = wm . -
xya X-0 XNa X
X = § is not differentiable at 0O
[ £ -500) . —X
', = QLM _ = _1
x2a0 X-0

Proposition: §: I%R, 3: T—>R differentiable at X, . Then:

(a) 5"‘35 L—>R differentiable at X, with (§+3)\(Xo> = .;\(xo) + j\(xo)
(0) §+9: T—>R differentiable at X, with (5 j)\(xo) = §{x,)- j\(xo) + §{x)- 9x.)

Proof for (b): (JC . j)(x) = ;(x) j(x) :(5(x0)+(x— x°)'A5.xo(x)>'(j(X°)+(x— xo)-Aj'xo(x)>
— 5(’(0)3 (x,) + (X— Xo )* (g(xo).Ajlxo(x) + A},xo(x) j(xo)-l-(x— Xo) 'A;lxgx‘).Ajlx(ox))

(5-9) () = $T)-g) + 50)- ) By () continuons
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)
7 ) 3
&G
J
;e (

\o_/

§°9)) =§{ a0)

Chain rule: Let I,JER be fwo intervals and 5:1‘%‘) , S+ d—R.

9 differentiable at X,

1 :> 5:05 differentiable at X, and:

§ differentiable at %zj(xo)
(JC °5\\ () = 5‘(3(@\ -+ g(x)

4 5(96)
AX

A5(y)

X, Ay

IS

ax

Xo

g(x2)
Proof:

j(x> = j(xo) + (X— Xo) 'Ajlx,,(x) ! 5(}’) = 5(}’0) & (Y" }’o) 'A;,yo()’) ;I W= j(xo)

(52909 = 5(3)

50 + (9 ()= 7o) By (gt
yed

[

[

S0 + ( 900) + (x= %)+ A 0=y ) A (56

[l

S+ (x=m) AL GO Ay (500D
<N

) confinuous at x,

— (j: oj)(xt) + (x— Xo) ° Asod,x‘,(x)

= 505 differentiable at X, with (5: 05)\ (XD = 5‘()(0) ' j:\(j("oﬂ = fx(j(xo)\ -5‘(X°>
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sequence of functions:

5.5 $.6.5..) H1I—=>R . FT—R

n—= oo

fn"Jc"NH 0

Uniform convergence means: |

Fact: §  continuous and ”JC,,"JC"N% 0] :> J( contfinuous

‘}i I — R s called differentiable if } is differentiable at all x,e I.
|
In this case, JC : T —> R defined by x |—>§\(x} is called derivative of £

Definition:

Example: }i R— R given by §(x):(|--x+§ => .)(\: R— R / §‘(X):(I-

Theorem: Let (51 , 51 , §3, 5\‘, '5:5 ’ __,>\oe a sequence of functions 5,,3 I —R.

] (\;Qnem is pointwisely convergent to a function J[; I —R

Assume:

* 5,,5 I — R differentiable for all nelN

* There is j : I —_— [R with ”Jch\__j" n-> oo 0
Then: |§n - \5:"“ Ty O and J( differentiable with J[\ =9 .

x) = § (%)
500-500) £

Z £0x) - §(x) ~ £0) -5, (%)

Proof: Let xel. 56-5ba (%) +
- X - X, \j ° X - X, X - X, X - X,
\_/—Yw
./ ) T>o 0
- D needls +[ £,(x) — j(x,,) o
or ang ¢ > : 15 - gll, === o ~—~N—
mean value Theorem is helpful — 0

Z € (see later video!)

ﬂam $60- 5 — j(x,)

X>X, X = Xq
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Examples: (a) 5 R— R , fx)=x = 53: R— R, ,f‘(x) = 1

(b) §: R—> R, £x)=x" = x-x
product rule: f\(x) = %1+ 141X =2-%

T

) & R— R, £x) = ¥ = X+ %

product rule: §() = X1 + Zx-x = 3

(OI) }: R%RI E(x):xh , ne[N
?(’O = n.x"" (proof by induction + product rule)

m m-1

(e) §: R— R, JC(X) = O X+ O X 4 e+ 41.X1+0\0

= -2
5\()() — am_m_x"’l 1+ Cl,,,-,‘(""'1)'XM e 4 d1

1
-
2

S
XT
uq’
=
~—r

1)

IS
~
X

(£) power series: J[(x)

Geveral vesult for power series: Let §: (-r,r)— R & f(x) = Zak-x ,
k=0

be a power series with radius of convergence r> 0.

(1)

cxk-x" is uniformly convergent on each interval [-C,C—] < (-r.r)

N

n
( sequence of functions ﬂhf [—C, C] —> R ; jh(X) = Zak-xk is uniformly comvevqevﬁ)
k=0

(2) Zak-k-xk'1 is uniformly convergent on each interval [—c,cj < (-r,r)

n
(s‘eq,uemce of functions j\hf [—C, c] —> R | j‘h(X) = 20"" k-xk-q is uniformly comvevqem’r>
k=1

) 5\(X) = Zak'k-x“'1
k=1

Prootf: (1) ||S - 9, ||°o “ Zak u — s'u[r li | Zak_xk‘
SuPYeOr:wE_soz]m‘ﬂ k=h+4 0 X€ —c,c] N->oo k=n+4 coms’raM \1|<1
, A —ineguality N o0 oo \/
k
< sup e Silall £ Sfalc < 85
X€ —c,c] N-> oo k=n+4 Ck k=n+4 k=h+4
\l/h—>oa
By assumpTion ZQR-FI‘ is convergent for C <F<r,
k=0 k 0
Hence there is B with :B > l&k-Fkl = |Qk|'Fk = |Qk|'ck- (%)
= 39" 2a/-! T’

(2) Same proof as in (1) because the radius of convergence is the same,

(3) Pointwise convergence of functions + uni{:ovm convergence of derivatives:

Pa” ~ JC differentiable and 5 x) Zak k.t
\ K (%) oo new k
Examples:  (3) el \ 1 k-1 4 k1
exp(x) = 2 =S exp (X)) =S —/—kxT =N A—x
fl f:', = el ; kI ;(k-m
_ i X (x)
- k) — exr X
Zn.+'1 X o _ 7
(b) sin(x) = 2(1 o => sin (x) = 2(—17 (ZWM)!(ZM)-X
= i Im
= Z(—D : (—2;3' X = cos(x)
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%oj : (0,0Q) —> R defined by the inverse of exp: R — (O/Oi
— Y
/N xp differentiable
lo\j
~/ />
/
Consider: 1,J) €R intervals .5 I —>J Vbijective => 3:—1: J— T exists
Assume:  §  differentiable at x,e T with 5:\()(0) #0 /il
Y° = §(Xo) 7
Choose sequence: (yh)heng J\%Yo} —/|r’- >
There is exactly one XhGT_ with im Vo = VY,
with S(x..):y,, F\ ;C(xo) e y y
=1 _1~{, -1 -4
5:()’0 -5 ()’o _ 3 (KXHD - }(ﬂxﬁ) X, = X
T F(Xn) - § o) FXm) ~ (%)
5 - )
) X, - X, 3

We need: X, —> X,
\

(§—1>()’)‘ e JC1(yh) - 5_1(70) <1m $(xn) = $(x)\ = § (y) =5 § ()’)
= Ve Y

h=>00

E

Let L1,J c R ve intervals and 5

X, = X, <> 5: continuous at ya

Theorem:

I — J be bijeo’five

IF} is differentiable at X, with 5( #0 and ; is continuous aJrY =£(x,
-4

Then } is differentiable at Yo with:

(()0) =

Example: [w)(y) _ 1
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N
Definition: I CR interval , 5 IT— R
(a) 5: has a local maximum at x,e L if -
) "
there is a neighbourhood of x,, US R with \u

;(XO) = Irmx{,&(x) | x€ Wn I}

(b) j: has a local minimum at x.e L if

there is a neighbourhood of x,, US R, with
§*) = min {5(0 | xe Wn I}
local maximum

(c) 5: has a local extremum at x.e L if } has a or at xeL .

local minimum

local maximum

A ¢ \( /\ local maximum
L>o
\4/\« _/o/
N_/ local minimum
—— N
L
Proposition:  §: (a,l)—> R differentiable at x,6 (a,b) . T /\" e
' >
} has a local extremum at X, => g\(xo) =0 T/Jm ]
local extremum
7 >

Proot: 1st case: JC has a local maximum at X,

:—:> there is a neighbourhood of X, |, U< (o\,L)

£x,) = hmx{ﬂx) | X € \A}

5: differentiable at x, => 5()(} = f(x.) + (x - XJ'A},x,(X)

) Xo
T%f Assume § (XO) > 0 : There exists a neighbourhood \ < A
| . > such that A5x(x) > 0 foral xeV.
Then: xsx, => 5()0 = 5-()() + (X— XJ‘A;,((X) >JC(X°)
N~

—~ DI
\
| | > Assume § (Xo) < O : There exists a neighbourhood Ve W
Xo

such that Af.xo(x) < 0O for all  xe V.
Then: x<x, => 5()() = §(X°) + (X— Xo‘)'Ah((X) >5:(Xo)
—r—

= JC‘(x,,) _ 5 <0 <0 g

2nd case: 5 has a local minimum at X,  (works similarly)

Theorem of Rolle N /—\7
‘¥= [a, L—_l —> R differentiable and 5(0\) = 50“) - .\](/

Then there is € (a,b) with g\( ) =0.

s
o -
A\

Proot: 1st case: j: constant => ;S:\(X) =0 for all x¢ [“;L] : v

2nd case: j: is not constant.

There are X X € EO«,L] with j—(x*) = surij(x) | X€[a,L—_|}
567 = g1 500 | e}

_)( not constant

____> e (Q,L) or X ¢ (Q'L) (oa\\ it )

Proposition above

— () =0 O




BECOME A MEMBER

ON STEADY 4 ' ¢’
The Bright Side of ¢ 4>
Mathematics
Real Analysis — Part 41
/N
\ §(6) - &
- mean slope: L—ox
t —
o X b
Mean value theorem: Let . [a\, I::I — R be differentiable,
A A I 1C
Then there exists x € (D\,L) with 5:\(X) = §(L> 40
A A L - -
Proof:  Rolle's theorem: §(a) = £(b) => there is x€ (o,L) with §\(x): §(L) JCOJ
\_,Y_L/
1f $(o) # F(b) = AN § =

— secant

>
§(b) - §=

L - a
§(6) - §@

- O

o b

Define: 9 [0\, |7:| —=> R by j(x) = $(x) - <

(x-a) 4 }(a)>

=> g differentiable with 3‘()&) = f(x) —

Rolle's theorem

Now: j(a) = j(L) =>  there is X € (o, L) with J\ (X)) =0

A ;(L) - g(“)
=  §(%) = — 0
Application: JC.' [0\/ l::l — R be differentiable. Assume §\(X) > (0 foral xelab]

mean value theorem x,) — §{(x,
Then: X < X, —"> there is X € (x,, %) with §\(f<): )~ 5

JC: \-_x”xJ — R Ko — X

:> 5(*:) - ) = 5\(;<> . (xr.— XA > 0
\_/Y\_/ VT ——

>0 >0
:> JC strictly monotonically increasing

strictly monotonically increasing

(a) }‘\(X) > O for all XQEQ,L—J

monotonically increasing

(¢) J(\(x) >0 foral xefa,l]

monotonically decreasing

—
(0) £()< 0 foral xelal] ==> § strictly mowotouically desveasing

—> J

—

(d) j\(x) < O foral xela,t]
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Extended mean value theorem: JC,J -. [a, L:I —> R be differentiable
and j\(x) # 0 for all xe (a,L),

S - ) £
3B -9 5

(I‘F j(x) = X, we get the normal mean value theovem)

Then there exists X ¢ (o, L) with

Proof: We will use Rolle's theorem again,

$) - £
3() = 9()

Define: h: [“/ I’:I — R by L\(X) = £ - < '(j&x) _j(o‘» + f(“)>

We have: k(a) = k(L) and h differentiable
Rolle's theorem

—>  there is X € (o, L) with L\\(;Z) =0

50 - f "

), A
) - T
5 (x PR 3 (x) [

L 'Hospital's rule: Let T be an interval and S,J : T —=> R be differentiable.
Let x.e T with {(x) = J(Xo) =0 and 3‘(x) # 0 for X#X, .

Then: (a’r least in a neighbourhood of Xo)

%Lm F () ke N [:m £

X-=>X, X) X-> X, j(x

() ()
and [ ' - fi J[,(
X=> X, j(x) X=> X, j(x)

exisTs

h—> oa

Proof: Choose sequence (Xn)hem < I\ixo} with X, —> X, .

Apply extended mean value theorem for [0\, l:_\ = [X.,, xo-) or = [X,, x:}

:> there is a sequence (9(,,) with X, € (X,,, Xo) or (Xo, X,,)

neE N

h—> oe

and X, —> X, satistying:

/. O s - PO . g £(x)

— ~ >
X-=> X, j(x) < j(xh) j(Xh)- j(x,,) 3‘(%.) X-> X, j’(x) 0

E le: A
Example: () %ém fy(hx) %Cm 1+

X-=> 0 X X-> 0 1

(b) %Cm 1- cos(x) _ KLM + Sin(x) _ K“h Cos(x) _ 1T

X-> 0 x* X->0 1-x X-> 0 L

N
—_—
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Generalisations of |'Hospital's rule
. (a) I interval, 5,3 : T — R differentiable, x,e T,
T () = 9(6) 20, 4 # 0 for X#X . Them
\
/. F d = F(x Jr
exisTs — ' '
ek, 900 ST U
|
[ FO / F
and (wm ( )
X=> X, j(x) X=X, g (x)
(b) T inferval, x,€ L, 5,3 : I\ixo}% R differentiable,
case "o
oo ZLM §(X> = Zum 3()() = 090 . TheV\:
X—= X, X-2 X,
Fooo g
g—:v; j(X exists —> g_t;;o j(") exists
T 2 €O N TR ¢S
e g;”x’,, 1) g;’ll,, 3 (0
(C) I in’fevva\ (with no upper bound) , S,J g I —> R oliFFeveVlTiab\e,
case "0 "
X-> o0 ZLV“ §(X) =0 lum S(X) = 0 . Then:
X-> 00 X-=> 0o
Foo o OO N
g_;y: j)( 3 exists :> g_;y:o j(x) exists
FOO e
e g;’: 3G g—‘;’; O
(O|) I ivrfevva\ (with no upper bound), E,J : I —> R cliFFeveMiab\e,
case "o’
oo - ‘v — Lym — ' JC(’Q . _ JC(X) _
X> g—,m §(X) o g—,mﬁ(X> Then gf,‘: 3() exists :> g_;\: s exists
O ) £
one g—:: g0 g::. 3
d (1 4 - )
Proof: (b) Use: ™ ?> = - —l—z (mx" = (—1).xz>
1 1
(x) ~ o ¢ dor xe IN{XS)
lim J = zim SEX7 Define S(X)tz §(x)
X2 Xq 3("7 X-> X, _ 0 f ‘-yor X=X,
569 )
7 ~ ! 5ar X€E I\ixo}
§(x):=4 900
(redo proot of |'Hospital's theorem) j 0 } _
5\(%) | Joc X=X,
%X:) 5 -F0 T Sy
T B T B C RO
3t (30"
(c) ~ 5(%\ , for x>0 , x'eI
Deﬁ”e: IS-(X) . 0O for X:O
case (a)
Examples: _) — Sin(x) (1 - ¢cos (x)
é:c.) ( Sin(x) X->O ( X-$tn (x) g"“ sin(x) + x-cos ()
— . ( SC"'(.") \>'O
T X=>0 Cos(X)+ cos(x)—x-siu(x) )

case (d)

)" L

X->

(2)

-

X->00

(5

exp(x)

1 7 _
CXP(x) =0
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JC’ I —> R differentiable ~~> 5.\: I — R

\
e 1f §:T —> R is continuous ~> § continuously differentiable

o 1If 5\: T —> [R is differentiable ~> g two—times differentiable

\

Jcm:::j-‘ ‘= (5\)\ T — R

" (o) (n) (h-1) \
Definition: JC: T —> R and set 5 -':‘-5 . For he IN, define \5: -'3'—(5 )

(inductively)

. JC is called N —times differentiable it 5("7 exists,

. JC is called N —times continuously differentiable if §(h7 exists and is continuous.

| ©)  4f 4’ :)
ther notations: = =
< Other n n $ v v §

. (n)
. :F is called 00 —fimes differentiable if § ° exists for all ne IN.
(arbitrarily often differentiable)

C(I) — {/5_ IT—R | § oon’rinuous}

Cn(]'_) = {/5— I— R | _§ N—1times continuously oliFFevevx’(iab\e} , he IN u ioos

Example: I = R
§x) =x"

GXP

COH2CMoaCM2CMD 2071 &

Proposition: 5'- I:“/L‘—_I_>[R differentiable , X,€ [q,l;] ] S\(XD =0, and

) 0
§ differentiable at X,. Then: (a) § (xa) S0 = JC has a local minimum at X,

(b) 5“(xn)< o = j: has a local maximum at X,

’ ) — ¢ . ,— contfinuous at X,
Proot: (3a) Assume O0< § (XD = ﬁ'"“ £(X) as = ﬁim As’xfﬁx)

X=> X, X =X, X=>Xo

—> There is a neighbourhood of x,, called Uc [a,L__\, with A}‘,x‘,&x) > 0

\ XL Xe = ;F\(X) < 0 = § decreasing
—= §09 or %o 4
0< X - X, t > U\i 1 XX, D 5‘()() > 0 = 5: increasing
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\

Taylor's theorem: / \/
/ \ >

7 / s \

expansion point

polynomial as a local approximation

\ h->
Linear approximation: I;C(Xﬁ L) = S(Xo) +5(XD-L\ + F(ML\ with F(L> %O 0
(X= X0t L)
Quadratic approximation: JC(XO‘* L) = $(x) +5‘(Xo)-l-» +1T';§“(XQ-L\Z + I‘(M\:
h=0

with r(h) — 0

Theorem: I interval |, 5—: I —R (Y\+1) —differentiable , X,e T,

1f he R such that x,+h e T, then:

©
X +l‘) = Z 5 (x |n + R,,Uﬂ) and there is 5  with
N —
W remainder term g€(X°,X°+L> or

N —th order
Taylor polynomial ‘§€(X + h X)
(h+4)(
such that Rn“") = 1)Ig) L\
()
ore otfen writes: Z A (x o+ O(W™) (Landau symbol)

Or with (X= X, + L): §(X) _ Z SQR)(XJ , (X— ka + (7((x_xhh+1>

k=0 k?
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Taylor: }(X0+L) = T;(m + w

- ) )
o T TR,

k=0

n S between x,and X,+ h

A /

Example: l°3 (4.2) = 2 L7 -

\Z

expansion point X, = 1

L =07

Log() LglGo = & Loy = vl
QDJ (XO) =0 QDJ\ (Xa) = 1 ["J“ (X,,) = -1 100“\ (Xo) = 2

Third order Taylor polynomial: T (m =0+ Ly ti\—l‘ . ?L's

0.182¢ -0.0004 L ﬁij(’l.z) £ 0.182¢ + 0.0004

0am2 £ foy(17) £ 0.3 = Ly(12) = 04s...
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Taylor:  $(x,+h) = (L\) R Un)
5”(x) Sth 4)(5) L
k! (n+1)!
ot
h —th order S between x,and x,+ h

Taylor polynomial

Proof:

Q)] k
1,0 = S5 (hex-t)

k=0

h+1

jh,h({:) = (L\ + X, — f)

Generalised mean value theorem:

-E,I,(X“L\") - —E’L(Xo‘)

jh’h(xo"'\n) - jh,h("")

U( Koth

-9 )>"h

h)h

k-1
GH x,—’c)

Note: :Eh X) = (L\)
T (0e) = See)

I j\h)l\(t) :—(h+1)'(h+xo—€>h

\

1.5
3,18

S between x, and x,+ h

h+1 \

_ b1,
(n+1) (% + Xo - g)

"” N 0(‘5)M
(h+13 (/(/>

3 kh” 5( 0(§)
B (h+13‘
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/N 6

i (orientated)

| — area befween
graph and x—axis

h
N
o X X X X X 1 ch(gg)'(xa'xd-«)
V" ih—)m

partition of x—axis ~~> Riemann integral 55()() d

(more modern: Lebesque integral)

Definition: partition of I:A, L] : a setf {_Xo,m e Xh} with:

a4 = X< X< X< e KX, < X, o=k

Definition: Cl): |:o\, L] ——> R is called a step function if it is piecewisely constant:

N\
c,t — there is a partition of I:“' L__\ ) {_X‘.,Xq g coo Xh} |
Cs T . —
Cye=C, —e s and there are numbers C,,..,c, € R such that
F : : — > Ci) g
: S le_,] > |(xo » x) for all je $4,..,n%

b n
Can we define: \g‘cb(x) dx = Z C; (%~ X;0) 9
o V=1
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(i): I:A, L] ——> R is called a step function if it is piecewisely constant:
21/\ there is a partition of [_A, L] , ix.,,m S Xh}
c.,:c:_ — | and there are numbers C,, ..., c, € R such that
C : : —> Cl) = C,; for all j5e§1,..,n%
: L Xe XJLI |(XJ—1' Xo) J v
b h
Proposition: \,(‘Cb (x) dx = Z o (%~ X;.0) is well—defined.
o V=1
r . . — -
?1: 4= S s x1<”. <Xh'<Xh=L la\ X, Xo X3 Xy xn‘l_ll:
: =X <X < X< <X X, = ——=—= - «—]
(PL ' ¢ = xb = X1 = X.,_< < XM-1 < X‘m L la\ ;(1 ’;CL 3(-3 %f x,..-1-|I:
with d) C. (l) _ 0\
|(X 1:X) J I |(;<\:j-1',>\<d) v
N\ N\
Cb T //// All=ds-“ /7
r // 1S C 1 /// [
C i 0>
a X X L o Xy Xy X 1

First case: fl)L > P

(partition 2 is finer than partition 1)

For example: 7 = 3\(’3 < ')\(‘, < ’)\(’5 = X, ) C, = o\q = Ag

dy (% -%) + 4 (%= %) = ¢ (&% + X %)=, (0-x)
X X%

h m
5 ; Cd '(XJ—XJ-1) - E ; Ad '(’)\(:j—?(.j-i)
‘5:1 ‘5:1

Second case: ?L j /|)1 and ?1 j fl).,_ ’ ?3 o= /’)1 v ?L
‘% ?33?1 and ?33?7'

= ZP, ) fo, e Zﬂ_ } Zﬂ > zﬂ:zﬂ
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Riemann infegral for step function: J(b(x) dx
a
map: S{[e.])— R
L is linear and monotonic
¢ > [d00 dx
L step function b
N
Proposition: (1) For 'XQR : Jld}(x} dx = 7\54)00 A x (homogeneous)
step function * ] (additive)

(2) For Y€ SEQ,L]) : b
Cb A ( g(m)(x) dx = J({)(x} dx + j«r(x} A x

(73
b (monotonic)

(3) For (b,'\{/ S S(I:AL]) (Pé’\r => Jd}(x) ax < jf\t/(x) A x

Proof: (2)
H(x) A V(x) A

Cf" - ; : . _—

C.+ - A;“ -

Gt d,+ —
- t 1> (M ! s
L i J - C ~ ~ ~ =
a X X b a X X_ X Ll

? Q:X°< X1<"'<Xh=L ?L Q:S\(’o<'>\(’1< <’)\(M=L
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A\ f
/ 7‘ §; EA,L] > [R
L 9 bounded
~
=

S
—

Sup ﬂ;(x} dx | ¢eS([~1), ¢< 33

'un§ §¢(X)Ax ¢e S 1), 432}}

Definition: A bounded function §: I:“' L__\ ——> R is called Riemann—integrable if

gup &gmxyax ‘ be S(.1) ¢£}j = Ln§ { 5¢(x) dx | ¢eS(-1), <ﬁ>2§j

//

b .
In this case: 5‘5(0 d x is called the (Riemann) integral of 5:
a
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Definition: A bounded function 5: I:A, L] ——> R is riemann—integrable

it Sup {54;(@& ‘ ¢e S(-1) 433}:%

= thgfcb(xwx ‘ de S 1) | <{>z}j

—

<:> V€>O j({),f\r QS([A,L]) :

b b
b<Sy wd fyldn - (000dx <

\%

x€ R
Examples: (a) Dirichlet function 5: I:O,‘\] —> R I j:(x) = L
A 0 , xeR\R

1-......-....-......-.-.-..........--.......... . S“'ep 'FMV]C—hOV\ ’Ll/ WI'\'VI

— ‘} < ’Lr also satisfies | £ '\1’

.« step function (i) with
Cbé } also satisfies Cbé 0

b

g
Sﬂ/(@Ax - \_i(\’?i; > = 5 is not Riemann—integrable

<i,/”(“’/ .
> 1 =0
AN - should be 1/2
/
b /
(b) \Sf: [0,4] — R , §(x) = x N
0 « xefodp
- . X)=d% , celbd
Define Cth(X> T = kT1 for Xe€ ¥ '%> Chr( ) l/‘:,. , ig%ﬁ_’%
4, xeldg
1
h h
Then: _ k1 1 _ 1 R () N
fd)h(X)Ax = N P hzZ(k'O R 3 - 7.
0 k=1 k=1
Define ﬁfh(x) T = % for Xe€ % ' t)
1 h y 1 1 h N
: _ <1 _ 1 R CE D 4
hen ay“h("“" ) pon hlék T ot 2 -7

‘———> g is Riemann—integrable
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R(E“‘L:D S i\g I:A,L] —> R bounded ‘ \St Riemanm—in’fegvab\e}

Property (1): map: &([a,L:D —> R
§— [ dx

is linear and monotonic

Definition: For I:On L] with

{

Sf(X)J\x s = 5§| (x)J‘x

Property (2): For l:o\, L] , we have M

b b
gf(x)Ax = SS(X)AX + gg(x)Ax P

L)
\

s M
o L

\

a— ]

Definition:

éﬂg(xﬁAx e _JS(X)AX

Property (3): §€ C(I:a, L:D _—::> }; € &([a, LiD
5 monotonically increasing :> 56 &([a, L__D
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N
a > /N

Definition: Let T € [R be an interval and 5: T —> [R ve a continuous function,

Then a differentiable function -F : [ —> rR is called

an antiderivative of 5:

F=f

Theorem: T inferval , 5: I — fR continuous, OE 1 . N &
first '{:: T — [R defined by }—(x) = yg(t) o\t //!\ﬂ )

fundamental Then
theorem

of calculus is differentiable and an antiderivative of 5: X -‘I:\ §

3 . . . .
is an antiderivative

Examples:  (a) j:: ﬂ{% [R, ,_)[(X) — X?. :> () 13

( ) s 1 is an antiderivative

for celR - ( ) 1% + ¢ is an antiderivative

AVX)
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Proposition: I inferval | 5: I — FR confinuous,

F'- I — FR antiderivative of JC .
Then: 61 I — fR antiderivative of 5

<:_> -G is constant

Proot: (:>) F G: T —> IR two antiderivatives of 5

mean value
theorem

Ui_é)\ =T-6 = F-§=0 = T-G6G is constant

(&) F-G6 s comstant => HX-6(0) = ¢ for a number ceR
= 6 =F-c = 6\: ?\: 3— => G antiderivative of JC

Theorem: | inferval , 52 T —> R continuous, F: T —> R antiderivative of 5

second b L
£ | - —
u::leaortz\’:a Then: S&( ) dt = F(O - ]‘:(0‘) R F(X) a
of calculus 2

1

1
Example: §Cos(x) AX = Sih(x)

0
0

= sin(1)
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Mean value theorem of integration

5—,51 I:O\,[v] —> rR continuous ﬂZ 0 .

b

Then there is Xe I:q,[::l with 5§(x)j(x) dx = 56\() fj()() Ax

(Of’fem: 321 : Sg(x) dx = \;(;()(L—a\) >

A\

5(&) T (\\//\ i

—
Proof: .
N =5 m<F(x) €M for all xefa,i]
o 9= 0 = mj)< F(x)g0x) < Mg(x)

monotonicity: thj(x) dx < 5}(@3(00\& <M jj(x) dx

there is pe ERAE /.A;gj(x) dx = g}(ﬂj(x) dx

intermediate value theorem

:> there is §<€ I:O\,l::l with 5(9() = /\A []

Proot of the first fundamental theorem of calculus:

x+ h
Flx+h) - F(x) = jg(t) At ;M

A X)?-l-L\

— 5‘(;0 L\ with ;(6_ [x, X+L__\ <or §(€ [x4.|,, , x]>
[m _'F(X+L) — q'—(x> _ [m 5(;() :§(x> — ,F\:} .

h=>0 A h=>0

Fx) = fg(t) at

Proof of the second fundamental theorem of calculus:

{sdt = F(L) - F

t{——(x\) = j‘g({;) At antiderivative of 5: with
’ olds for E \/
) Fla) =0 J

arbitrary antiderivative off: T = E + c for ceR

b
FO-F@ = EO - K@ = (594t :
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Integration by substitution

T < interval , & T — ¥i : continuously
IR e 5: rR CONTInHEHs C’) l__"‘/(’:l — 1 differentiable

Then: j} {:)) M = §§ X> Ax

Ax 4=)

Remember: X = ¢({;)

a
A—::cp‘(a = dx = (b dt
Example: 1 ; d
S (i) = J;f (£)3 £ 4t :13— Sm(x)dx
0 X =
dx = 38 dt

M‘ Let F: T — [R be an antfiderivative of JC

chain rule

(Fed)'(t) = F'4w)-$® = 56w) o'
55( 1) ¢'0 dt = J(F 6)'(£) dt =(Fo o)

x = ¢(b) ()
— F(x) = SJC(X) dx 0
X= ‘b(“) ‘b(ﬂ)

Another substitution vule:  §: [;"‘;[’]% R continuous , 4): J—T continuously
differentiable

\),I C_:—[R intervals IQ_I:Q,L] and bijective

L X0
§5 e = RECORIRE
’ /bijec’rive: [0, T)— [o,1]
Example; j’\ L .’W%.: ¢(t) = S.ih(t)
el o substifufion: X = sin(t) | 1
aresin(t) s = b & e

S 1 Cas(’t) dt = 51 dt = arcsih(t,)
Cos({:) o
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Integration by paris

T <R interval , 5: j . T — IR continuously differentiable , a,be T

Then: jac(x (x) dx = §(x)-9 x) —j§(x (x) dx

Example: 490 el b \
X C’_XF(X) dx = X&XF(X) jaxr(x).1 d x L)C(X) — @xr(x)
B . T 9(x) = X
= X-&XF(X) ~ @,xr(x) §(X) = &Xr(x)
e oo g0 = 1

x=b

- <x-¢xr(x) - axr@

Proot:  product rule: (} 3) (x) x) 3()() + }(x) ‘9 \X ()
59

xl,ﬂn
Fll

5(5 3> (x) dx —_(5 x)gx)o\x +J§ x)g X)olx ]
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1
f dx = 9 antiderivative?
X (x+1)
3

partial fraction decomposition

A R _ A0 _ X1
% (x+1) X X+ X (xet)  X{x+)

o 1 _ 1 1 j1 1
antiderivative: — L S — _
’ o jx(xﬂ) i ﬂx X+1> <5 X s i

X+
— foj(h(l) — [v(|x+1|> + constant

Let 5: be a rational function
_ P
) 9(x)

wWe need the zeros of 1 :

Partial fraction decomposition:

with oleq(f) < oleq(q) =:n

(1) n different real zeros: X

o Xy poen A
(x) A A
A T A, o g L Find A, A, |
9) T x=x, X=X, X=X,
(2) k different real zeros: X X0 Ay with multiplicities Ky gy X
k
Jg=1

—o
N
X
~~—/
=
- D
S

(1) )
L . S
a(x) T x-x, (X=X} (X=X,)™ X=X, (X=X,)

+ LA Iy

(3) 9 has complex zeros: calculate as in (1) and (2) with

) K)
XX % €C AL AP eC

Example: 1
}(X) = ! zeros of the denominator: X, =0 , X = 1
Xt (x-1)
%=1 & =1
1 A B
= — + + — (%=1
Xt (x-1) X X" (x-4) ‘ <)

= ] = A-X(x-4)+$-(x-4) + Cx'

Y
1

X*(A+C) + x-(-A+B) + 1-(-3)

1 0 1\/A 0 1 0 1
= |11 0B |={0)] ~>1-11 0
0 -1 0/ \C 1 0

-4 0
T+I (1 0 1 0> T+ /1 0 1|0
N—>> o 1 1 0 N—> o 1 1 0
0 -1 0 1 O o 1 1
:> C: I E=-1 | /A\:"1
> 1 (-1 -1 kN
> Exi(x_o“\“ . g ”‘”f(x—ﬂ“‘"
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5: : R —> R continuous
b

J-JC(X) dx  well-defined for a b€ R

jf(XMx _? /W\
> a l—> o0

Definition: 5: : [a, oo)% R be a function with the property:

JC‘[A,L] € R([“'B__D for all b>a

b oQ
1f [im &_—g(X) Ax  exists, we write j:)c(x) dx for this limit and
ID—)DQ o o0

we say the integral converges,

Example: \/\

y exp(-x) 00 L
~_ jcxp(—x) dx = L[i\m jexp(-ﬂ dx

~. 0 B I
7~
b
0

= [iv“ <— e_x\o(—x)
i (= exp(ct) + 1) _

L—>co

L
Similar definition for: J-Jc(x)o‘x

- 0Q

Definition: 5: i rR —> [R be a function with the property:

JC‘D,L] S R([“'E__D for all a,be R (O\<L>

C (oS
1f there is a ceR such that J-Jc(x)o‘x and J‘;(X)o‘x converge,
- 00 &

N
o C oQ
_S-JC(XMX = &;(x)o\x + 5§(x)dx
- - 00 c —_/\\lc\__>
Example: " 1
—/ \ 1+
>
0o 1 0 00 0 b
_ 1 1 _
_;.S‘ Ly 5 —_5 1+ xt o §1+xl ax = oév;j‘ 11+xl ax + Lﬁ—l:ﬁ 11+xl Ax
0Q o < o
0 b
= [um O‘VC{QH(X) + ﬁi\m O\Tc'('.ah(x)
0>-= 4 b->= 0

= [ilm O\VC{OM(_L) - Kﬂ\m QTC{Qh(G\)

L—)m 0> -

-
I

7

~
n

+ —
1

I
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\ improper infegral series
_‘—|—|=,_ >

¥>
\

/

comparison fest
Theorem: ‘S:'j : [a, oo)% rR with j()() >0 for all x€ |a, oo) and:

j [a,4]! JC‘ [o\,L:Ié: &([“'ED for all b>a.

() 1% | S0 £ 900 for all xe[a,00) , then

/

j\oj(xy A x converges :> j}(x) dx  converges

(b) 1f j(X) < }(X) for all XG\:O\, 00), Then:

Jj(ﬂ A x diverges :> Jc(x) dx  diverges

[/} a

0Q b
: : 1 ' ' b> e
Example:  Recall ?S‘T dx  diverges since 51? dx = /"JQ’) 2R e
1

oQ
Is J- 'i( Ax convergent?
X +1
K. (X X" IS
.<x"‘+'1> ToxM 1-&171 g
X
so eventually: X-( T ) > 1
X +1 — 1
there is R=1 /
such that for all x=R: SN N
X+1 — T X

oQ

oQ
X . :
5 o JX IS ohvevqen’f because éii% 0‘)( is diveyqeyﬁ’

R
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A A |
\\ improper infegral serles

I e e e e e~

e 7

Theorem: et 52 : [Oloo)% I:O, oo> be monotonically decreasing.

Then: Z}(k) convergent <:> &;(X) dx  convergent
k=0 0

In this case: (O < ki] k) - f}(x)dx < §0)

A - & \

! o~
k

proot:  §(K) :j f&(x)dx j (k-1) dx = F(k-1)

"

fK < Z }(wx < > 5(k-1)
k=1 K 1k-'1 k=1
n A Nn-4
:> 5-(k)< J}()Qo{x < Z}(k) (W—=>00 shows first part)
k=1 \ k=0
IF the limits exist: S J}(x)dx <S> 5K 5
k=0
0
Example:
- i : convergent for o > 1
k=1 : divergent for 0<ox <1
L RNk o 4 1
Proof J_’]_ dx = l=at & p
1 X" )(o (x> ‘L X = 1
J ;!
(=0 . x> L s
= 1_1_0( [ 1_% , x < "‘l oo, &< 1
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We know: 5—: I:O\,[:] —> R Riemann—integrable
- 5— is bounded

N\
wWhat about this?

[ ]
C ] >
A

Definition:  Lef }: (Q,L] —> R be a function with the property that

T\\ JC [a ve 1] € R(EO\*E B__D for all €50 .

"“t L'
1f Lm 5§(X Adx  exists , we write jg(x dx for this limit and
ENO  ate
we say The m’reqra\ converges,
Example: £69 =1

Bs-fgj(x) dx ?

. . 3(’() = f@(")
infegration

by qpav’fs JC(X) =X
3\ (x) =41 1

1 1 J, - |
Jfﬁ(X)Ax :51%@@)0{)( = X 9(@‘: ~ jx% dx = X-@g(x)‘ D‘&

%b\w‘; !f@(x)dx = -(f@(”“ D - lm ¢ (ﬁ@(ﬁ
N =1 e ) = o - iy 22

I
|
—_

€N0 €EX0 —
‘/ {
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For }: [‘*/l’]\i[’?} —> R
one defines the following . B
L J
improper Riemann infegral: o P L
b F‘Qa b
[$0dx = fim §500dx + fim § 50 dx
- ENO ENO pre,
1 ~g
Example: 1 ’
=dx = b Jdx 4l s
_jg‘z I E:\VV(; :;2“—)". s}.yg X’

I
o =~
€3
/,\
]
|
T~
—
+
o =
43
E}
|
o]
.
1

1
Counterexample:
5% A x does not exist: (
51 _

o
<
< |~
S
>
I
=
3

Cauchy principal value: 1 (—E

mZ_Q
£3
/\
o
o
"
Lall
-~
| —
- m
.'_
o
o
-
>
-~

1!






