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Real Analysis - Part 1

Calculus, analysis, infinitesimal calculus,…

Goal: Understanding differential and integral calculations

Topics: Limits, continuity, derivatives, integrals.

Foundation: Real numbers! Start Learning Mathematics

Start Learning Reals

Axioms of the reals: A non-empty set     together with operations        and ordering

is called the real numbers if it satisfies:

(A)  is an abelian group

(M)  is an abelian group

(D)  distributive law

(O)  is a total order, compatible with   and     Archimedean property

(C) Every Cauchy sequence is a convergent sequence. if

if

complete number line

Absolute value:



Real Analysis - Part 2

Sequences: A sequence of real numbers:

a map

or

Notations: infinite list of numbers

or or

Examples: (a)

Graph:

(b)

We will see:

(c)

Definition: A sequence          is called convergent to          if

neighbourhood of

If there is no such        , we call the sequence         divergent.

Example: is convergent to

Proof: Let 

Then for         , we have:

We choose         such that
Archimedean property!
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Example: is divergent.

Proof: Assume the sequence         is convergent to

distance

Choose: Then:

and

Hence: and

Definition: A sequence          is called bounded if

Otherwise, the sequence is called unbounded.

Important fact: convergent bounded

Proof:
neighbourhood of

There is        with:

Important fact: convergent There is only one limit

Proof: Assume there are two limits

Then:

Therefore: For
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convergent to         :

neighbourhood of

Theorem on limits: convergent sequences.

Graph

Then: (a)

(b)

(c)

Example: convergent?
   limit?

We know:

By (b):

with limit theorems
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convergent sequences.

In particular:

Properties: convergent sequences.

(a) Monotonicity: for all 

Graph

(b) Sandwich theorem: for all and

convergent with

Proof of (b): (by the limit theorems)

Let Then there is with:

is convergent with limit

is convergent with limit
limit theorems

Example:
sequence          given by convergent?

   limit?

for all
Sandwich
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interval:

an upper bound
for

a lower bound
for

Definition: For a subset        : is called an upper bound for    if

is called a lower bound for    if

If    is an upper bound for    and         , then     is called a maximal element of 

If    is a lower bound for     and         , then     is called a minimal element of 

Example:

do not exist

lowest upper bound

Definition: For a subset        : is called supremum of    if

(upper bound for   )

(     is no upper bound for   )

Then write: or if   is not bounded from above

or 

For a subset        : is called infimum of    if

(lower bound for   )

(     is no lower bound for   )

Then write: or if   is not bounded from below

or 
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convergent (there is a limit 

Different idea:

Definition: If
,

then is called a Cauchy sequence.

Important fact: For a sequence of real numbers:

Cauchy sequence Convergent sequence
Start Learning Real - Part 2

Completeness axiom (C)

Dedekind completeness: If is bounded from above, then (exists)

If is bounded from below, then (exists)

Proof:

Two cases: (1) is an upper bound for

(2) is not an upper bound for

Two cases: (1) is an upper bound for

(2) is not an upper bound for

For

gets arbitrarily smallis a Cauchy sequence

is a convergent sequence with limit

Important application: If          is monotonically decreasing for all

and bounded from below the set           has a lower bound

then: is convergent.
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Fact: If          is monotonically for all

and bounded from the set           has an upper bound

then: is convergent.

increasing

above

(Monotone convergence criterion)

Example: The sequence          given by                    is convergent.

Proof: (1) Monotonicity: mon. decreasing

mon. increasing

Bernoulli's inequality:
For       and

(2) Bounded from above:

We have:

and

telescoping

fact

Monotone convergence 
        criterion

The sequence            is convergent.

Euler's number
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be a sequence of natural numbers that is strictly monotonically increasing,Let

then          is called a subsequence of

Definition:

Example: given by

Fact: convergent with

every subsequence is convergent

Example: given by

subsequence: limit

subsequence: limit
accumulation values

Definition: is called an accumulation value of

if there is a subsequence            with

(cluster point, accumulation point,
 limit point, partial limit,…)

Show:
is an accumulation value of

The   neighbourhood of    contains infinitely many
sequence members of
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Bolzano-Weierstrass theorem

bounded has an accumulation value
(has a convergent subsequence)

lower bound upper bound

Proof:

If infinitely many sequence members in it: Choose left-hand interval

Otherwise: Choose right-hand interval

New interval:
repeat

We get:

And:

We know: mon. increasing and bounded

mon. decreasing and bounded convergent

By limit theorems:

Define a subsequence           by choosing

Sandwich theorem

is convergent
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Example: given by

divergent to 

divergent to 

has the improper accumulation value is not bounded from above

has the improper accumulation value is not bounded from below

A given sequence          could have many accumulation values: and none, one or two
improper accumulation values

Definition: Let           be a sequence of real numbers. An element

is called: limit superior of if    is the largest 
(improper) accumulation value of

Write:

limit inferior of if    is the smallest 
(improper) accumulation value of

Write:
graph

Fact:
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Let           be a sequence of real numbers.

Example:

Properties: (a) is convergent

(b) is divergent to

(c) is divergent to

(d) For we have:

(only if the right-hand
 side is defined)

not defined

Example:

If

If

Example:

not defined
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neighbourhood ofFor

is called a neighbourhood of      if there is

such that

Example: is a neighbourhood of

is a neighbourhood of

is not a neighbourhood of

Definition: is called open (in   ) if, for all       ,     is a neighbourhood of

is called closed (in   ) if                is open.

Example: are both open and closed.

is closed but not open.

is open but not closed.

is neither open nor closed.

Fact: is closed For all convergent sequences             with

for all

we have:

Example:

Take

Then:

Definition: is called compact if for all sequences             with

for all         there is a convergent subsequence

with
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Compact set (sequentially compact set):

Any sequence                  has an accumulation value

Example: (a) is compact.

(b)  is compact.

(c) has no accumulation value is not compact.

(d) compact set.

Let is bounded

Bolzano-Weierstrass
     theorem

has an accumulation value

closed

accumulation value actually satisfies

Heine-Borel theorem For            , we have:

is compact is bounded and closed

Proof: Do the same as before with Bolzano-Weierstrass theorem.

Assume is compact.

Let                 be a convergent sequence with limit

is compact

 has an accumulation value

only one acc. value

is closed.

Assume is not bounded.

There is a sequence                  with           for all  

no accumulation value is not compact.
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Series: "infinite sum", special sequence

Example: sequence

Definition: Let           be a sequence.  The sequence            given by

is called a series.

If          is convergent, we write:

?

?

Example from above:

not convergent!

Another example: divergent to
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Series: is the sequence of partial sums

Example: geometric series

We show: convergent

Question: ?

For      :

convergent convergent to

For        : geometric series

Example: Harmonic series

(divergent to infinity)

Proof: (sequence is monotonically increasing)

Show that          is not bounded from above.

because:
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Series: sequence of partial sums

Properties: If        and       are convergent,      , then:

(a) is also convergent

and the limit is:

(b) is also convergent

and the limit is:

Cauchy criterion: is convergent

Proof:
is convergent is a Cauchy sequence

completeness

Example: Calculate:

Important fact: is convergent convergent with
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Harmonic series:

Leibniz criterion:

convergent

divergent

Theorem: (Alternating series test, Leibniz criterion, Leibniz's test)

Let          be convergent with               and monotonically decreasing.

Then: is convergent.

Proof:

(monotonically increasing)

(monotonically decreasing)

(bounded)

(mon. decreasing + bounded)

(mon. decreasing + bounded)

(convergent!)

Example:
convergent by Leibniz criterion
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 is called absolutely convergent if          is convergent.

abs. convergent      convergent is convergent

(Cauchy criterion)

(Cauchy criterion)

is convergent

Counterexample: is convergent but not absolutely convergent
(Leibniz criterion) (harmonic series)

Majorant criterion Let be a series.

for all

If there is         and a convergent series        with

and with                                 ,  then         is abs. convergent.

Proof: Apply Cauchy criterion to

Minorant criterion Let be a series with 

If there is         and a divergent series         with

for alland with                                 ,  then is divergent.

Example: is divergent because for all

and is divergent
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 absolutely convergent?

There is a convergent majorant is abs. convergent!

We know the geometric series!

convergent

Fact: If there is          and         with         such that for all

then is abs. convergent!

Ratio test:

then is abs. convergent!

If there is          and             such that         

for alland

Proof: inductively

Example: convergent? for all

Yes! (by ratio test)

Warning: is not enough!

Root test: If there is          and             such that         

for all

then is abs. convergent!

Proof:

Example: convergent?

for allYes, by root test!

Remember:
is abs. convergent!

is divergent!

Attention: For the ratio test, this is different:

is abs. convergent!

is divergent!inf

(Remember: the ratio test is weaker than the root test, in general)
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(n is even)

Reordering does not change a finite sum!

Example:

is not convergent
but has two accumulation values

a reordering

is not convergent
but has two accumulation values

Example:
convergent by the Leibniz criterion

a reordering

different limits!

Definition: Let         be a series and                  be a bijective map.

Then            is called a reordering of

Theorem: If          is absolutely convergent, then:

is also abs. convergent  and

bijectivefor any

Proof: Cauchy criterion Let

For
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How to multiply?

For finite sums:

Cauchy product: For two series                 the series

with is called the Cauchy product.

Theorem: If         is absolutely convergent and        convergent, then

Cauchy product         is abs. convergent and

Example: for (abs. convergent by the ratio test)

Apply Cauchy product for           and

binomial coefficient:

binomial theorem

fundamental 
multiplicative identity
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Function:

Later: continuous functions

continuous

not continuous

Idea: small errors on x-axis small errors on y-axis

Definition: is called a bounded function if

is a bounded set in 

Sequence of functions:

sequence:

with sequence members:

For any fixed
we get an ordinary sequence of real numbers:
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sequence of functions:

Pointwise convergence: is pointwisely convergent to a function

if for all

is convergent to

Example:

For

(pointwise) limit function

Example:

For for all

For for all
(pointwise) limit function

Example:

pointwise

limit
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is pointwisely convergent to

Definition: is uniformly convergent to                if

Distance for functions:

supremum norm of

Uniform convergence means:

Example:

pointwise

limit

for all

Result pointwise convergence uniform convergence 
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Definition:

Let

with

is also convergent with

If there is          and

all sequences

we have

then we write

and if           for all

and if           for all

Example: (a)

(b)

For          take with

(limit theorems)
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Definition: Let             be a function with

is called continuous at        if

or if    is isolated in

withThere is no sequence

Definition: Let             be a function with

is called continuous (on     if is continuous at    for all    

To remember: Continuity implies: if 

Examples: (a) constant

(b)

not continuous here does not exist

continuous here

(c)

not continuous here
(d) polynomial

We have: for all
limit theorem for sequences

(e) rational function

polynomial

polynomial

continuous on

(f) absolute value

(g)

(   is dense in    by construction)
does not exist
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Continuity: is called continuous at        if

Theorem: Let             be a function with

For       , we have:

is continuous at        

Proof: Assume
Take

For all       , we find 

with and   is not continuous 
at        

Choose sequence                  with limit Let Take
(from assumption)

There is such that for all         we have

Also (by assumption) we have   is continuous 
at        



Real Analysis - Part 29

Proposition: continuous at

then continuous at

continuous at

is continuous atIf in addition , then

Composition of functions:

Proposition: with

continuous at

continuous at
continuous at

Proof: Choose sequence                  with limit
f is continuos at 

and 

is continuous at
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continuous

compact compact

Theorem: compact continuous.

Then: is compact (= bounded + closed)
Heine-Borel

and there are with

Proof: Compact means: every sequence has a convergent subsequence.

Let be a sequence.

For each    there is         with New sequence 
compact

There is a subsequence           that is convergent:

continuous

So          is convergent with limit compact
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pointwise convergence:

uniform convergence:

Theorem: continuous (for all and

uniformly converges to

Then: is also continuous.

Proof: Let Let Set: (see end of the proof)

Uniform convergence:

Continuity of
We find with

Hence:

Conclusion: We find with

is continuous at
arbitrary

is continuous
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continuous

Intermediate value theorem: be continuous andLet

or

Then there is            with

Corollary: is also an interval.

Proof of the intermediate value theorem:

Define new function:

if

if

Then     is continuous, and

Check

If

If

Repeat

Wet get two Cauchy sequences and

We know:
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1  Exponential function defined by

Euler's number

We have shown:

For example:

In general: for 

More properties: is a continuous function

is strictly monotonically increasing

is bijective

2  Logarithm function defined by the inverse of

is strictly monotonically 
increasing

is a continuous function

3  Polynomials

polynomial has degree

continuous

4  Power series converges

Example:

gives power series

Theorem: For a power series , there is a maximal

with

power series is continuous on this interval

It holds:

(Cauchy-Hadamard)
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Differentiability (linearisation) smoothness

slope at point    ?

approximate   locally with a linear function?

(affine) linear function:
(linear polynomial)

slope
constant

Linear approximation:

secant

tangent

we want it to exist

slope at differential quotient/ derivative

Definition: interval with more than one point

or open set

We call    differentiable at    if there is a function

with for all

and           is continuous at



Real Analysis - Part 35

differentiable at exists call it 

for

can be extended to a function that is continuous at

with

There is with

for all

and           is continuous at

There is withand number

for all

and       is continuous at     with

Proposition: differentiable at continuous at

Proof: There is which is continuous at

Examples: (a) linear polynomial:

(b) absolute value 

is not differentiable at

Proposition: differentiable at Then:

(a) differentiable at with

(b) differentiable at with

Proof for (b):

continuous
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Chain rule: Let            be two intervals and

differentiable at

differentiable at
differentiable at     and:

Proof:

continuous at

differentiable at     with
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sequence of functions:

Uniform convergence means:

Fact: continuous and continuous

Definition: is called differentiable if    is differentiable at all

In this case, defined by             is called derivative of

Example: given by

Theorem: Let                       be a sequence of functions

Assume:

differentiable for all

There is                 with

is pointwisely convergent to a function

Then: and differentiable with

Proof: Let 

needs

mean value theorem is helpful
(see later video!)

For any
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Examples: (a)

(b)

product rule:

(c)

product rule:

(d)

(proof by induction + product rule)

(e)

(f) power series:

General result for power series: Let

be a power series with radius of convergence

(1) is uniformly convergent on each interval

sequence of functions                                                is uniformly convergent

(2) is uniformly convergent on each interval

sequence of functions                                                   is uniformly convergent

(3)

Proof: (1)
supremum norm

on
-inequality

constant

By assumption            is convergent for

Hence there is     with

(2) Same proof as in (1) because the radius of convergence is the same.

(3) Pointwise convergence of functions + uniform convergence of derivatives:
part 37

differentiable and

Examples: (a)
new

(b)
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defined by the inverse of

differentiable

Consider: intervals bijective exists

Assume: differentiable at         with

Choose sequence:

withThere is exactly one

with

We need:

continuous at

Theorem: be intervals and be bijective.Let

withIf is differentiable at and is continuous at

then is differentiable at     with:

Example:
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Definition: interval

(a)      has a local maximum at        if

there is a neighbourhood of with

(b)      has a local minimum at        if

there is a neighbourhood of with

(c)      has a local extremum at       if has a at
local maximum

or
local minimum

local maximum

local minimum

local maximum

Proposition: differentiable at

         has a local extremum at      

local extremum

not a 
local extremum

Proof: 1st case: has a local maximum at      

there is a neighbourhood of

differentiable at

continuous at
Assume There exists a neighbourhood

such that                     for all

Then:

Assume There exists a neighbourhood

such that                     for all

Then:

2nd case: has a local minimum at      (works similarly)

Theorem of Rolle

differentiable and

Then there is with

Proof: 1st case: constant for all

2nd case: is not constant

There are with

not constant

or call it

Proposition above
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mean slope:

Mean value theorem: Let be differentiable.

Then there exists with

Proof: Rolle's theorem: there is with

secant

Define: by

differentiable with

If

Now:
Rolle's theorem

there is with

Application: be differentiable. Assume for all

Then:
mean value theorem

there is with

strictly monotonically increasing

(a) for all strictly monotonically increasing

(b) for all strictly monotonically decreasing

(c) for all monotonically increasing

(d) for all monotonically decreasing
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Extended mean value theorem: be differentiable

and for all

Then there exists with

If , we get the normal mean value theorem

Proof: We will use Rolle's theorem again.

Define: by

We have: and differentiable

Rolle's theorem

there is with

L'Hospital's rule: Let be an interval and

exists

be differentiable.

Let with and for 
at least in a neighbourhood ofThen:

exists

and

Proof: Choose sequence                      with

Apply extended mean value theorem for or

there is a sequence with or

and satisfying:

Example:
(a)

(b)
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Generalisations of l'Hospital's rule

(a) interval,

exists

differentiable,

, for 

exists

Then:

,
case "  "

and

(b)
case "  "

interval, , differentiable,

Then:

existsexists

and

(c)
case "  "

interval (with no upper bound) differentiable,

Then:

existsexists

and

(d)
case "  "

interval (with no upper bound) differentiable,

Then: existsexists

and

Proof: (b) Use:

Define:

(redo proof of l'Hospital's theorem)

(c)

Define:
for

for

Examples: (1)

case (a)

(2)

case (d)
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differentiable

If is continuous continuously differentiable

If is differentiable two-times differentiable

Definition: and set For define
(inductively)

is called    -times differentiable if exists.

is called    -times continuously differentiable if exists and is continuous.

Other notations:

is called -times differentiable if exists for all

continuous

  -times continuously differentiable

(arbitrarily often differentiable)

Example:

Proposition: differentiable and

differentiable at Then: (a) has a local minimum at

(b) has a local maximum at

Proof: (a) Assume
continuous at

There is a neighbourhood of , called with

for
decreasing

increasing
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Taylor's theorem:

expansion point

polynomial as a local approximation

Linear approximation: with

Quadratic approximation:

with

Theorem: interval -differentiable

If such that , then:

remainder term
  -th order
Taylor polynomial

and there is with

or

such that

One often writes: (Landau symbol)

Or with
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Taylor:

  -th order
Taylor polynomial

between   and

Example:

expansion point

Third order Taylor polynomial:

first digits
of
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Taylor:

  -th order
Taylor polynomial

between   and

Proof:

Generalised mean value theorem:

between   and

Note:
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(orientated)
area between
graph and x-axis

partition of x-axis Riemann integral

(more modern: Lebesgue integral)

Definition: partition of a set with:

Definition: is called a step function if it is piecewisely constant:

there is a partition of

and there are numbers such that

for all

Can we define: ?
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is called a step function if it is piecewisely constant!

there is a partition of

and there are numbers such that

for all

Proposition: is well-defined.

Proof:

with

First case: (partition 2 is finer than partition 1)

For example:

Second case: and :

and

and
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Riemann integral for step function:

map:
is linear and monotonic

Proposition: (1) For

step function

(homogeneous)

(2) For step function (additive)

(3) For
(monotonic)

Proof: (2)

Define:
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bounded

Use step functions 

Definition: A bounded function is called Riemann-integrable if

In this case: is called the (Riemann) integral of
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Definition: A bounded function is Riemann-integrable

if

and

Examples: (a) Dirichlet function

step function with

also satisfies

step function with

also satisfies

is not Riemann-integrable

(b)
should be 1/2

Define for

Then:

Define for

Then:

is Riemann-integrable
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bounded Riemann-integrable

Property (1): map:
is linear and monotonic

Definition: For with

Property (2): For we have

Definition:

Property (3):

monotonically increasing
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?

Definition: Let           be an interval and                 be a continuous function.

Then a differentiable function                 is called

an antiderivative of if

Theorem: interval continuous,

Then                  defined by

is differentiable and an antiderivative of

   first
fundamental
  theorem
 of calculus

Examples: (a) is an antiderivative

is an antiderivative

for is an antiderivative

(b)

width: height:
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Proposition: interval continuous,

antiderivative of

Then: antiderivative of

is constant

Proof: two antiderivatives of

is constant

mean value
 theorem

is constant for a number

antiderivative of

Theorem:

  second
fundamental
  theorem
 of calculus

interval continuous, antiderivative of

Then:

Example:
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Mean value theorem of integration

continuous

Then there is with

Often:

Proof:

for all

monotonicity:

there is

intermediate value theorem

there is with

Proof of the first fundamental theorem of calculus:

with

Proof of the second fundamental theorem of calculus:

antiderivative of with
holds for 

arbitrary antiderivative of  : for

or
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Integration by substitution

interval continuous continuously
differentiable

Then:

Remember:

Example:

Proof: Let be an antiderivative of

chain rule

Another substitution rule: continuous continuously
differentiable
and bijectiveintervals

Example: try:

substitution:

bijective:
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Integration by parts

interval continuously differentiable

Then:

Example:

Proof: product rule:
fundamental 
  theorem
 of calculus
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? antiderivative?

partial fraction decomposition

antiderivative:

+ constant

Partial fraction decomposition: Let    be a rational function

with deg( ) deg( )

We need the zeros of

(1) different real zeros:

Find

(2) different real zeros: with multiplicities

(3) has complex zeros: calculate as in (1) and (2) with

Example:
zeros of the denominator:

+ constant
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continuous

well-defined for

?

Definition: be a function with the property:

for all

If exists, we write            for this limit and

we say the integral converges.

Example:

Similar definition for:

Definition: be a function with the property:

for all

If there is a       such that and converge,

Example:
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improper integral series

comparison test

Theorem: with for all

for all

and:

(a) If for all then:

converges converges

(b) If for all then:

diverges diverges

Example: Recall: diverges since

Is convergent?

so eventually:

there is
such that for all

is divergent because is divergent
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improper integral series

Theorem: Let be monotonically decreasing.

Then: convergent convergent

In this case:

Proof:

(       shows first part)

If the limits exist:

Example:
convergent for

divergent for

Proof:
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We know: Riemann-integrable

is bounded

What about this?

Definition: Let be a function with the property that

for all

If exists  

we say the integral converges.

we write              for this limit and

Example:
? integration 

 by parts
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For

one defines the following

improper Riemann integral:

Example:

Counterexample:
does not exist!

Cauchy principal value:




