ON STEADY

The Bright Side of Mathematics

Example:
$$(a_n)_{h\in\mathbb{N}} = ((-1)^n)_{n\in\mathbb{N}}$$
 is divergent.
Proof: Assume the sequence $(a_n)_{h\in\mathbb{N}}$ is convergent to $a\in\mathbb{R}$.
 $\forall \epsilon > 0 \exists N \in \mathbb{N} \quad \forall n \ge \mathbb{N} : |a_n - a| < \epsilon$
Choose: $\epsilon = 1$ Then: $|a_N - a| < \epsilon$
and $|a_{N+1} - a| < \epsilon$
Hence: $|1 - a| < \epsilon$ and $|(-1) - a| < \epsilon$

$$2 = |1 - (-1)| = |1 - \alpha + \alpha - (-1)| \le |1 - \alpha| + |\alpha - (-1)| = |1 - \alpha| + |(-1) - \alpha| \le 2$$

Otherwise, the sequence is called unbounded.

Important fact: $(a_n)_{n \in \mathbb{N}}$ convergent $\Longrightarrow (a_n)_{n \in \mathbb{N}}$ bounded Proof: There is $a \in \mathbb{R}$ with:

