ON STEADY

The Bright Side of Mathematics

<u>Definition</u>: For a subset $M \subseteq \mathbb{R}$: $L \in \mathbb{R}$ is called <u>an upper bound for M</u> if $\forall x \in M : x \leq b$

 $\alpha \in \mathbb{R}$ is called a lower bound for M if $\forall x \in M : x \ge \alpha$

If b is an upper bound for M and b \in M, then b is called a maximal element of M. If a is a lower bound for M and a \in M, then a is called a minimal element of M. min M

Example:
$$M = [1,3]$$
, max $M = 3$ min $M = 1$
• $M = (1,3)$, max M , min M do not exist \longrightarrow sup M , inf M
lowest upper bound $= \sup M$
 $(\underbrace{s \in V}_{1} \underbrace{s \in V}_{1} \underbrace{s \in W}_{1} \underbrace{$

For a subset $M \subseteq \mathbb{R}$: $l \in \mathbb{R}$ is called <u>infimum of M</u> if • $\forall x \in \mathbb{M}$: $x \ge l$ (lower bound for M) • $\forall \varepsilon > 0 \exists \tilde{x} \in \mathbb{M}$: $l + \varepsilon > \tilde{x}$ ($l + \varepsilon$ is no lower bound for M)

Then write: $\inf M := 1$ or $\inf M := -\infty$ if M is not bounded from below or $\inf \emptyset := \infty$