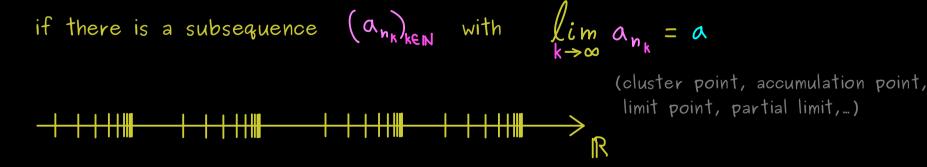
The Bright Side of Mathematics - https://tbsom.de/s/ra

Definition: $(h_k)_{k\in\mathbb{N}}$ be a sequence of natural numbers that is strictly monotonically increasing, Let then $(a_{n_k})_{k \in \mathbb{N}}$ is called a subsequence of $(a_n)_{n \in \mathbb{N}}$. $(\forall k \in \mathbb{N} : n_{k+1} > n_k)$ h = 1 2 3 4 5 6 7 8 ... $(a_n)_{n \in \mathbb{N}}$ given by $a_n = \frac{1}{n}$, $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \dots)$ Example: $(\alpha_{n_k})_{k \in \mathbb{N}} = (\alpha_{2^k})_{k \in \mathbb{N}} = (\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \dots)$ <u>Fact:</u> $(a_n)_{n \in \mathbb{N}}$ convergent with $\lim_{n \to \infty} a_n = a$ \implies every subsequence $(a_{n_k})_{k \in \mathbb{N}}$ is convergent $\lim_{k \to \infty} a_{n_k} = a_{n_k}$ Example: $(a_n)_{n \in \mathbb{N}}$ given by $a_n = (-1)^n$ -1 $\rightarrow \mathbb{R}$ subsequence: $(a_{n_k})_{k \in \mathbb{N}} = (a_{2\cdot k})_{k \in \mathbb{N}} = (1, 1, 1, 1, 1, 1, ...)$ limit 1 subsequence: $(\alpha_{n_k})_{k \in \mathbb{N}} = (\alpha_{2 \cdot k + 1})_{k \in \mathbb{N}} = (-1, -1, -1, -1, \dots)$ limit -1 $A \in \mathbb{R}$ is called an accumulation value of $(a_n)_{n \in \mathbb{N}}$ Definition:



Show: $\alpha \in \mathbb{R}$ is an accumulation value of $(a_n)_{n \in \mathbb{N}}$, $(a - \varepsilon, a + \varepsilon)$ $\iff \forall \varepsilon > 0$: The ε -neighbourhood of a contains infinitely many sequence members of $(a_n)_{n \in \mathbb{N}}$