

Real Analysis - Part 9

Let $(h_k)_{k \in \mathbb{N}}$ be a sequence of natural numbers that is strictly monotonically increasing, <u>Definition:</u>

then $(\alpha_{n_k})_{k \in \mathbb{N}}$ is called a <u>subsequence</u> of $(\alpha_n)_{n \in \mathbb{N}}$. $(\forall k \in \mathbb{N} : n_{k+1} > n_k)$

 $(a_n)_{n \in \mathbb{N}}$ given by $a_n = \frac{1}{n}$, $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{1}{4}, \dots)$ Example:

 $\left(\alpha_{n_k}\right)_{k \in \mathbb{N}} = \left(\alpha_{2^k}\right)_{k \in \mathbb{N}} = \left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{32}, \dots\right)$

Fact: $(a_n)_{n \in \mathbb{N}}$ convergent with $\lim_{n \to \infty} a_n = a$

 \implies every subsequence $(a_{n_k})_{k \in \mathbb{N}}$ is convergent $\lim_{k \to \infty} a_{n_k} = a$

Example: $(a_n)_{n \in \mathbb{N}}$ given by $a_n = (-1)^n$

subsequence: $\left(\alpha_{n_k}\right)_{k\in\mathbb{N}} = \left(\alpha_{2\cdot k}\right)_{k\in\mathbb{N}} = \left(1,1,1,1,1,\ldots\right)$ limit 1

accumulation values subsequence: $(\alpha_{n_k})_{k \in \mathbb{N}} = (\alpha_{2 \cdot k + 1})_{k \in \mathbb{N}} = (-1, -1, -1, \dots)$ limit -1

 $A \in \mathbb{R}$ is called an accumulation value of $(A_n)_{n \in \mathbb{N}}$ Definition:

> if there is a subsequence $(\alpha_{n_k})_{k \in \mathbb{N}}$ with k_i $\lim_{k\to\infty} \alpha_{n_k} = \alpha$

Show:

 $\alpha \in \mathbb{R}$ is an accumulation value of $(\alpha_n)_{n \in \mathbb{N}}$ (A-E, A+E)

> \iff $\forall \epsilon > 0$: The ϵ -neighbourhood of α contains infinitely many sequence members of $(a_n)_{n\in\mathbb{N}}$