

Real Analysis - Part 24

sequence of functions:

$$(f_1, f_2, f_3, f_4, f_5, \dots)$$

$$f_n: I \longrightarrow \mathbb{R}$$

$$(f_1, f_2, f_3, f_4, f_5, \dots)$$

Pointwise convergence: $(f_1, f_2, f_3, f_4, f_5, ...)$ is pointwisely convergent to a function

 $f: I \longrightarrow \mathbb{R}$ if for all $\tilde{x} \in I$:

$$(f_1(\tilde{x}), f_2(\tilde{x}), f_3(\tilde{x}), f_4(\tilde{x}), f_5(\tilde{x}), \dots)$$

is convergent to $f(\tilde{x})$.

$$\forall \tilde{x} \in I \quad \forall \varepsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge N : \quad |f_n(\tilde{x}) - f(\tilde{x})| < \varepsilon$$

Example:
$$\int_{\mathbf{n}} : [0,1] \longrightarrow \mathbb{R}$$
, $\int_{\mathbf{n}} (\mathbf{x}) = \frac{1}{\mathbf{n}} \times + 1$

For
$$\widetilde{X} \in [0,1]$$
: $\int_{n} (\widetilde{X}) = \frac{1}{n} \widetilde{X} + 1 \xrightarrow{n \to \infty} 1$

$$\implies$$
 (pointwise) limit function $f: [0,1] \longrightarrow \mathbb{R}$, $f(x) = 1$

Example:

$$f_n: [0,1] \longrightarrow \mathbb{R}$$

$$\mathfrak{f}_{n}: [0,1] \longrightarrow \mathbb{R} , \quad \mathfrak{f}_{n}(x) = \begin{cases} h^{2} \times (1-hx) , & x \in [0,\frac{1}{n}] \\ 0 , & x \in (\frac{1}{n},1] \end{cases}$$

$$f_{n}(x) = 0$$
 for all $n \in \mathbb{N}$

$$f_{\rm b}(x) = 0$$

$$n > \frac{1}{x}$$

For
$$x = 0$$
: $f_n(x) = 0$ for all $n \in \mathbb{N}$ \Longrightarrow (pointwise) limit function For $x > 0$: $f_n(x) = 0$ for all $n > \frac{1}{x}$ \Longrightarrow $f: [0,1] \longrightarrow \mathbb{R}$, $f(x) = 0$

Example:

