

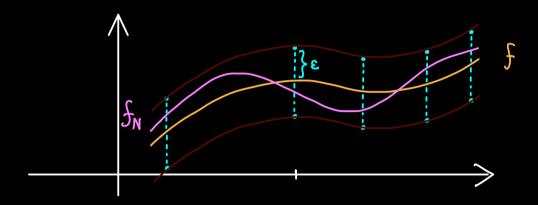
Real Analysis - Part 25

 $(f_1, f_2, f_3, f_4, f_5, ...)$ is pointwisely convergent to $f: I \longrightarrow \mathbb{R}$

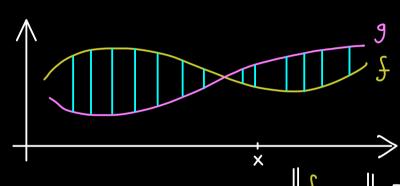
 $\forall \tilde{x} \in I \quad \forall \varepsilon > 0 \quad \exists N_{\tilde{x}} \in \mathbb{N} \quad \forall n \ge N : \quad |f_n(\tilde{x}) - f(\tilde{x})| < \varepsilon$

Definition: $(f_1, f_2, f_3, f_4, f_5, ...)$ is uniformly convergent to $f: I \longrightarrow \mathbb{R}$ if

 $\forall \varepsilon > 0$ $\exists N \in \mathbb{N} \quad \forall n \ge N \quad \forall \widetilde{x} \in \mathbb{I} : |f_n(\widetilde{x}) - f(\widetilde{x})| < \varepsilon$



Distance for functions:



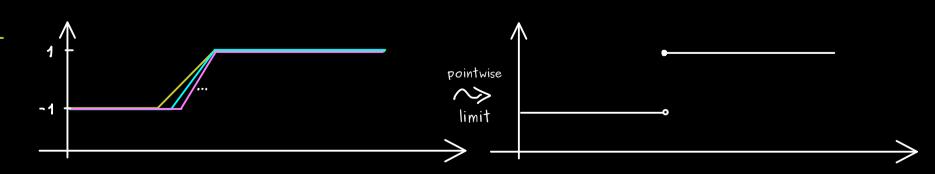
 $f: I \longrightarrow \mathbb{R}$

 $g: I \longrightarrow \mathbb{R}$

 $\frac{1}{||f-g||_{\infty}} = \sup_{x \in T} ||f(x) - g(x)||$ supremum norm of $|f-g||_{\infty} = \sup_{x \in T} ||f(x) - g(x)||$

Uniform convergence means: $\|f_n - f\|_{\infty} \xrightarrow{n \to \infty} 0$

Example:



 $\|f_n - f\|_{\infty} \ge 1$ for all n

Result

pointwise convergence

uniform convergence

