

Real Analysis - Part 27

<u>Definition:</u> Let $f: I \rightarrow \mathbb{R}$ be a function with $I \subseteq \mathbb{R}$.

f is called continuous at $x_{e} \in I$ if

$$\lim_{X \to X_0} f(x) = f(x_0)$$

Let $f: I \to \mathbb{R}$ be a function with $I \subseteq \mathbb{R}$. Definition:

f is called <u>continuous</u> (on I) if f is continuous at x_o for all $x_o \in I$.

To remember:

Continuity implies:
$$\lim_{h\to\infty} f(x_n) = f(\lim_{h\to\infty} x_n)$$
 (if $\lim_{h\to\infty} x_n \in I$)

Examples: (a) $f: I \rightarrow \mathbb{R}$ constant

(b)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $f(x) = \begin{cases} 0 & , & x < 0 \\ 1 & , & x \ge 0 \end{cases}$

(c)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
, $f(x) = \begin{cases} 0 & , & x \neq 0 \\ 1 & , & x = 0 \end{cases}$

(d) $f: \mathbb{R} \to \mathbb{R}$ polynomial

$$f(x) = \alpha_m \cdot x^m + \alpha_{m-1} \cdot x^{m-1} + \cdots + \alpha_1 \cdot x^1 + \alpha_0$$

We have: $\lim_{X \to X_0} f(x) = \int_{\text{limit theorem for sequences}} f(x) =$

(e)
$$f: I \rightarrow \mathbb{R}$$
 rational function
$$I := \left\{ x \in \mathbb{R} \mid q(x) \neq 0 \right\}$$

$$f(x) = \frac{\rho(x)}{\rho(x)}$$
 continuous on I polynomial

(f)
$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 absolute value

(f)
$$f: \mathbb{R} \to \mathbb{R}$$
 absolute value $f(x) = |x| = \begin{cases} -x & , & x < 0 \\ x & , & x \ge 0 \end{cases}$

$$\lim_{X \to 0} f(x) = \lim_{N \to \infty} f(x_n) = \lim_{N \to \infty} (-x_n) = 0$$

$$\lim_{N \to \infty} f(x) = \lim_{N \to \infty} f(x_n) = \lim_{N \to \infty} f(x_n) = 0$$

$$\lim_{N \to \infty} f(x) = \lim_{N \to \infty} f(x_n) = 0$$

$$\lim_{N \to \infty} f(x) = \lim_{N \to \infty} f(x_n) = 0$$

(a)
$$f: \mathbb{R} \to \mathbb{R}$$
 $f(x) = \begin{cases} 0 & , & x \notin \mathbb{Q} \\ 1 & , & x \in \mathbb{Q} \end{cases}$

