

The Bright Side of Mathematics - https://tbsom.de/s/ra

Real Analysis – Part 39

<u>Theorem</u>: Let $I, J \subseteq \mathbb{R}$ be intervals and $f: I \longrightarrow J$ be bijective.

If
$$f$$
 is differentiable at x_0 with $f'(x_0) \neq 0$ and f^{-1} is continuous at $y_0 := f(x_0)$,
then f^{-1} is differentiable at y_0 with:
 $(f^{-1})'(y_0) = \frac{1}{f'(f^{-1}(y_0))}$
Example: $\log^1(y) = \frac{1}{e \times p'(\log(y))} = \frac{1}{e \times p(\log(y))} = \frac{1}{y}$