

Real Analysis - Part 57

Integration by substitution

 $\square \subseteq \mathbb{R} \text{ interval }, \ f \colon \square \longrightarrow \mathbb{R} \text{ continuous }, \ \varphi \colon \! [\mathtt{a},\mathtt{b}] \longrightarrow \square \text{ differentiable}$

Then:
$$\int_{a}^{b} f(\phi(t)) \cdot \phi'(t) dt = \int_{\phi(a)}^{\phi(b)} f(x) dx$$

Remember:
$$X = \phi(t)$$

$$\frac{dx}{dt} = \phi'(t) \implies dx = \phi'(t) dt$$

Example:

$$\int_{0}^{1} t^{2} \cdot \sin(t^{3}) dt = \frac{1}{3} \int_{0}^{1} \sin(t^{3}) \cdot 3t^{2} dt = \frac{1}{3} \int_{0}^{1} \sin(x) dx$$

$$dx = 3t^{2} dt$$

<u>Proof</u>: Let $F: T \longrightarrow \mathbb{R}$ be an antiderivative of f

$$\begin{aligned} (F \circ \phi)'(t) &= F'(\phi(t)) \cdot \phi'(t) = f(\phi(t)) \cdot \phi'(t) \\ &= \int_{\alpha}^{b} (\phi(t)) \cdot \phi'(t) dt = \int_{\alpha}^{b} (F \circ \phi)'(t) dt = (F \circ \phi)(t) \Big|_{t=\alpha}^{t=b} \\ &= F(x) \Big|_{x=\phi(a)}^{x=\phi(b)} = \int_{\phi(a)}^{\phi(b)} f(x) dx \end{aligned}$$

Another substitution rule:
$$f: [a,b] \longrightarrow \mathbb{R}$$
 continuous, $\phi: J \longrightarrow \mathbb{I}$ continuously differentiable $J, I \subseteq \mathbb{R}$ intervals, $I \supseteq [a,b]$ and bijective

$$\int_{A}^{b} f(x) dx = \int_{\phi^{-1}(a)}^{\phi^{-1}(b)} f(\phi(t)) \cdot \phi^{-1}(t) dt$$

$$= \int_{\phi^{-1}(a)}^{b} f(\phi(t)) \cdot \phi^{-1}(t) dt$$

Example:

Le[0,1)

$$\int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}} dx$$

try: $\phi(t) = \sin(t)$

substitution: $x = \sin(t)$
 $dx = \cos(t) dt$
 $= \int_{0}^{1} \frac{1}{\sqrt{1-(\sin(t))^{2}}} \cos(t) dt = \int_{0}^{1} 1 dt = \arcsin(b)$
 $\cos(t)$

try:
$$\phi(t) = sin(t)$$

substitution: $x = sin(t)$
 $dx = cos(t) dt$