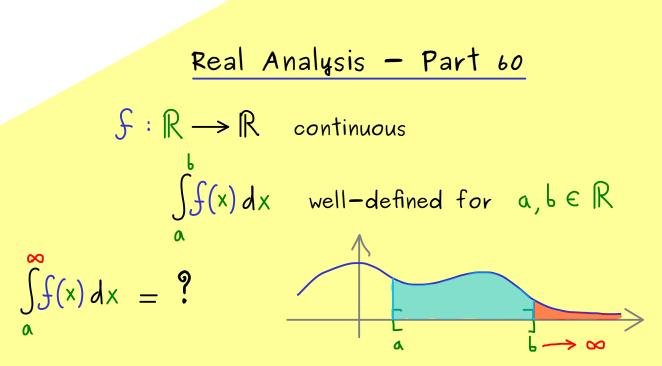
ON STEADY





exp(-x)

If
$$\lim_{b \to \infty} \int_{a}^{b} f(x) dx$$
 exists, we write $\int_{a}^{\infty} f(x) dx$ for this limit and a

we say the integral converges.

Example:

$$\int_{0}^{\infty} \exp(-x) dx = \lim_{b \to \infty} \int_{0}^{b} \exp(-x) dx$$
$$= \lim_{b \to \infty} \left(-\exp(-x) \Big|_{0}^{b} \right)$$

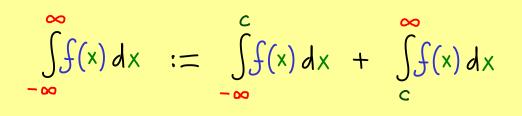
$$= \lim_{b \to \infty} \left(-\exp(-b) + 1 \right) = 1$$

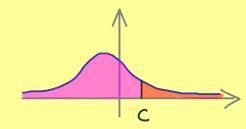
Similar definition for:

<u>Definition:</u> $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a function with the property:

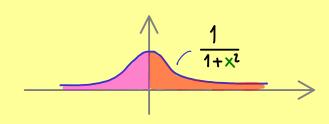
$$f|_{[a,b]} \in \mathcal{R}([a,b])$$
 for all $a,b \in \mathbb{R}$ $(a < b)$

If there is a CER such that $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ converge,





Example:



$$\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} dx = \int_{-\infty}^{0} \frac{1}{1+x^{2}} dx + \int_{0}^{\infty} \frac{1}{1+x^{2}} dx = \lim_{a \to -\infty} \int_{a}^{0} \frac{1}{1+x^{2}} dx + \lim_{b \to \infty} \int_{0}^{b} \frac{1}{1+x^{2}} dx$$
$$= \lim_{a \to -\infty} \arctan(x) \Big|_{a}^{0} + \lim_{b \to \infty} \arctan(x) \Big|_{0}^{b}$$
$$= \lim_{b \to \infty} \arctan(b) - \lim_{a \to -\infty} \arctan(a)$$
$$= \frac{1}{2} \int_{a}^{\infty} \frac{1}{2} + \frac{1}{2} \int_{a}^{\infty} \frac{1}{2} = 1$$

L

L