ON STEADY

The Bright Side of Mathematics

Sequences: A sequence of real numbers: a map $\alpha: \mathbb{N} \to \mathbb{R}$ or $\alpha: \mathbb{N}_{0} \to \mathbb{R}$ Notations: $(\alpha_{1}, \alpha_{2}, \alpha_{3}, ...)$ infinite list of numbers $(\alpha_{h})_{n\in\mathbb{N}}$ or $(\alpha_{h})_{n=1}^{\infty}$ or (α_{h}) Examples: (a) $(\alpha_{n})_{n\in\mathbb{N}} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{n} = (-1, 1, -1, 1, ...)$ $\widehat{araph:} \quad \widehat{araph:} \quad \widehat$

(c)
$$(\alpha_n)_{n \in \mathbb{N}} = (2^n)_{h \in \mathbb{N}} = (2, 4, 8, 16, 32, 64, 128, 256, ...)$$

Definition: A sequence $(a_n)_{n \in \mathbb{N}}$ is called <u>convergent to $a \in \mathbb{R}$ </u> if $\forall \epsilon > 0 \quad \exists N \in \mathbb{N} \quad \forall n \ge \mathbb{N} : |a_n - a| < \epsilon$ $\epsilon_{n \in [n \in [n \in [n]] + n \in [n]]}$ $a_1 = a_2$ If there is no such $a \in \mathbb{R}$, we call the sequence $(a_n)_{n \in \mathbb{N}} divergent$. Example: $(a_n)_{n \in \mathbb{N}} = (\frac{1}{n})_{h \in \mathbb{N}}$ is convergent to $O \in \mathbb{R}$. Proof: Let $\epsilon > 0$. We choose $\mathbb{N} \in \mathbb{N}$ such that $\mathbb{N} \cdot \epsilon > 1$. Then for $n \ge \mathbb{N}$, we have: $|a_n - 0| = |a_n| = \frac{1}{n} \le \frac{1}{N} \le \epsilon$.