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Definition: Let 5: [ — R be a function with L <R,

§ is called continuous at xe1 if
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Definition:  Let {: [ — R be a function with I <R,

{ is called continuous (on I) if § is continuous at x, for all xe1.

To remember:  Continuity implies: fi g(X,,) = \g([im X,) (“C fimx,€T
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Examples: (a) 5: ] - R constant
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not continuous here: [g,,, £(x) does no t exist
X=X,
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not continuous here
(d) 5: R— R polynomial
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limit theorem for sequences
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( Qis dense in R by construction) -
%im {(x) does not exist

X=> X,



