ON STEADY

The Bright Side of Mathematics

exist

<u>Definition</u>: Let $f: I \rightarrow \mathbb{R}$ be a function with $I \subseteq \mathbb{R}$. f is called continuous at $x_0 \in I$ if $\lim_{X \to X_0} f(x) = f(x_0)$ £(x_) X or if X_0 is isolated in I_0 . There is no sequence $(X_n)_{n \in \mathbb{N}} \subseteq \mathbb{I} \setminus \{x_n\}$ with $\lim_{n \to \infty} X_n = X_n$ Xo

Let $f: I \rightarrow \mathbb{R}$ be a function with $I \subseteq \mathbb{R}$. Definition:

f is called <u>continuous</u> (on I) if f is continuous at x_0 for all $x_0 \in I$.

To remember: Continuity implies:
$$\lim_{h \to \infty} f(X_n) = f(\lim_{h \to \infty} X_n)$$
 (if $\lim_{h \to \infty} X_n \in I$)

(c)
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = \begin{cases} 0 & x \neq 0 \\ 1 & x = 0 \end{cases}$
(d) $f: \mathbb{R} \to \mathbb{R}$ polynomial
 $f(x) = a_{m} \cdot x^{m} + a_{m-i} \cdot x^{m-1} + \dots + a_{i} \cdot x^{i} + a_{0}$
we have: $\lim_{X \to X_{0}} f(x) = \int (x_{0})$ for all $x_{0} \in I$.
 $\lim_{X \to X_{0}} f(x) = \int (x_{0})$ for all $x_{0} \in I$.
(e) $f: I \to \mathbb{R}$ rational function
 $I := \{x \in \mathbb{R} \mid q(x) \neq 0\}$
 $f(x) = \int (x)$ continuous on I
(f) $f: \mathbb{R} \to \mathbb{R}$ absolute value
 $f(x) = |x| = \{x = x + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x < 0 + x$