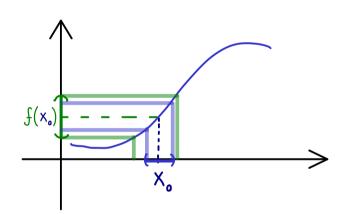
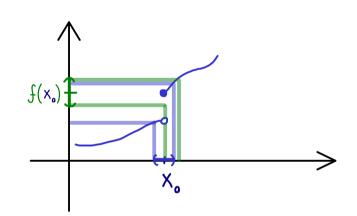

Real Analysis - Part 28

Continuity: f is called continuous at $x_0 \in I$ if

$$\lim_{X \to X_0} f(x) = f(X_0)$$

Theorem: Let $f: I \to \mathbb{R}$ be a function with $I \subseteq \mathbb{R}$.


For $X_{\circ} \in I$, we have:



f is continuous at $x \in I$

$$\forall \varepsilon > 0 \quad \exists \delta > 0 \quad \forall x \in I : |x - x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon$$

Proof: (\Longrightarrow) Assume $\exists \varepsilon > 0 \quad \forall \delta > 0 \quad \exists x \in I : |x - x_0| < \delta \quad \wedge \quad |f(x) - f(x_0)| \ge \varepsilon$ \Longrightarrow For all $n \in \mathbb{N}$, we find $x_n \in I \setminus \{x_0\}$

with $\left| x_n - x_o \right| < \frac{1}{n}$ and $\left| f(x_n) - f(x_o) \right| \ge \varepsilon \implies \begin{cases} f \text{ is not continuous} \\ \text{at } x_o \in I \end{cases}$

(\Leftarrow) Choose sequence $(x_n)_{n\in\mathbb{N}}\subseteq \mathbb{I}\setminus\{x_0\}$ with limit x_0 . Let E>0. Take $\delta>0$. There is $N\in\mathbb{N}$ such that for all $n\geq N$ we have $|x_n-x_0|<\delta$.

Also (by assumption) we have $\left| f(x_n) - f(x_n) \right| < \epsilon$. \implies f is continuous at $x_n \in I$