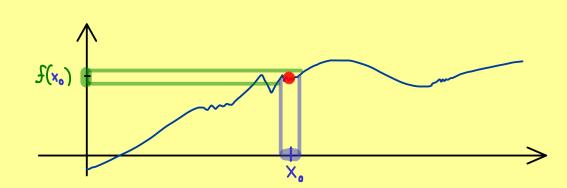
The Bright Side of Mathematics

Real Analysis - Part 29

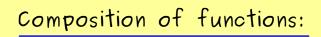


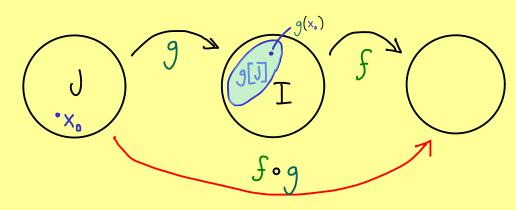
<u>Proposition</u>: $f: I \to \mathbb{R}$, $g: I \to \mathbb{R}$ continuous at $x_{\bullet} \in I$,

then $f + g : I \longrightarrow \mathbb{R}$ continuous at $x \in I$,

 $f \cdot g : I \rightarrow \mathbb{R}$ continuous at $x \in I$.

If in addition $g(x_0) \neq 0$, then $\frac{f}{g}$ is continuous at $x_0 \in I$.





<u>Proposition:</u> $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$, $I, J \subseteq \mathbb{R}$, with $g[J] \subseteq I$.

<u>Proof:</u> Choose sequence $(x_n)_{n \in \mathbb{N}} \subseteq J \setminus \{x_0\}$ with limit x_0 .

f is continuous at $g(x_0)$ and $\lim_{n \to \infty} g(x_n) = g(x_0)$

 $\lim_{n\to\infty} (f \circ g)(x_n) = \lim_{n\to\infty} f(g(x_n)) = f(\lim_{n\to\infty} g(x_n))$

g is continuous at $x_0 = f(g(\lim_{n \to \infty} x_n)) = (f \circ g)(x_0)$