



 \tilde{c} . \tilde{c} (1) > 0 \tilde{c}

Then f is continuous,
$$\gamma := 0$$
, and $f(a) \leq 0$, $f(b) \geq 0$.
Check $\tilde{f}(c)$:
Repeat If $\tilde{f}(c) > 0$: $b_1 := c$, $a_1 := a$
If $\tilde{f}(c) \leq 0$: $a_1 := c$, $b_1 := b$

Wet get two <u>Cauchy</u> sequences $(a_n)_{n \in \mathbb{N}}$, $(b_n)_{n \in \mathbb{N}}$ and $b_n - a_n \xrightarrow{h \to \infty} O$ $\implies \widetilde{X} := \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n \in [a, b]$ We know: $\begin{array}{ccc}
\lim_{n \to \infty} \tilde{f}(a_n) \leq 0 \\
\lim_{n \to \infty} \tilde{f}(b_n) \geq 0
\end{array} \implies \begin{array}{ccc}
\tilde{f}\left(\lim_{n \to \infty} a_n\right) \leq 0 \\
\tilde{f}\left(\lim_{n \to \infty} b_n\right) \geq 0
\end{array} \implies \begin{array}{ccc}
\tilde{f}(\tilde{\chi}) \leq 0 \\
\tilde{f}(\tilde{\chi}) \geq 0
\end{array}$

 \Box



