ON STEADY

The Bright Side of Mathematics

 $\oint \text{ differentiable at } X_{o} \iff \lim_{X \to X_{o}} \frac{f(x) - f(x_{o})}{x - x_{o}} \quad \text{ exists } \left(\text{ call it } f'(x_{o}) \right)$ $\iff \Delta_{f_{i}, X_{o}}(x) := \frac{f(x) - f(x_{o})}{x - x_{o}} \quad \text{for } x \neq x_{o}$

can be extended to a function that is continuous at X_{o}

$$\Delta_{\mathfrak{f},\times_{\mathfrak{o}}}: \mathbb{T} \longrightarrow \mathbb{R} \quad \text{with} \quad \lim_{x \to x_{\mathfrak{o}}} \Delta_{\mathfrak{f},\times_{\mathfrak{o}}}(x) = \Delta_{\mathfrak{f},\times_{\mathfrak{o}}}(x_{\mathfrak{o}})$$

$$f(x) = f(x_0) + (x - x_0) \cdot \Delta_{f, x_0}(x) \text{ for all } x \in \mathbb{R}$$

and Δ_{f, x_0} is continuous at X_0 .

$$\Delta_{\sharp,\times_{o}}(x) = \int'(x_{o}) + \Gamma(x)$$

There is
$$\Gamma : I \longrightarrow \mathbb{R}$$
 and number $b \in \mathbb{R}$ with

$$\int (x) = \int (x_0) + (x - x_0) \cdot b + (x - x_0) \cdot \Gamma(x) \text{ for all } x \in I$$
and Γ is continuous at X_0 with $\Gamma(x_0) = 0$

Proposition:

$$f$$
 differentiable at X, \Rightarrow f continuous at X,

Proof: There is
$$\Delta_{\mathfrak{f}_{1}\times_{0}}: \mathbb{T} \longrightarrow \mathbb{R}$$
 which is continuous at X_{0} .

$$\lim_{x \to x_{0}} \mathfrak{f}(x) = \lim_{x \to x_{0}} \left(\mathfrak{f}(x_{0}) + (x - x_{0}) \cdot \Delta_{\mathfrak{f}_{1}\times_{0}}(x) \right)$$

$$= \mathfrak{f}(x_{0}) + \lim_{x \to x_{0}} (x - x_{0}) \cdot \lim_{x \to x_{0}} \Delta_{\mathfrak{f}_{1}\times_{0}}(x) = \mathfrak{f}(x_{0}) \square$$

Examples: (a) linear polynomial: $f: \mathbb{R} \longrightarrow \mathbb{R}$, $f(x) = \alpha_1 \cdot x + \alpha_0$

$$f'(x_{o}) = \lim_{x \to x_{o}} \frac{f(x) - f(x_{o})}{x - x_{o}} = \lim_{x \to x_{o}} \frac{\alpha_{1} \times + \alpha_{o} - (\alpha_{1} \times + \alpha_{o})}{x - x_{o}} = \lim_{x \to x_{o}} \frac{\alpha_{1} \cdot (x - x_{o})}{x - x_{o}} = \alpha_{1}$$

(b) absolute value $f: \mathbb{R} \longrightarrow \mathbb{R}$, f(x) = |x|, $x_0 = 0$ $\int_{x \to 0}^{x} \frac{f(x) - f(0)}{x - 0} = \int_{x \to 0}^{x} \frac{x}{x} = 1$ $\int_{x \to 0}^{x} \frac{f(x) - f(0)}{x - 0} = \int_{x \neq 0}^{x} \frac{-x}{x} = -1$ $\int_{x \neq 0}^{x} \frac{f(x) - f(0)}{x - 0} = \int_{x \neq 0}^{x} \frac{-x}{x} = -1$